Rib Histomorphometry for Adult Age Estimation

  • Christian Crowder
  • Jarred Heinrich
  • Sam D. Stout
Part of the Methods in Molecular Biology book series (MIMB, volume 915)


Estimating the age at death in the adult skeleton is problematic owing to the biological variability in morphological age indicators and the differential response to environmental factors over an individual’s life. It is becoming increasingly important for anthropologists to improve age estimates through the use of multiple age indicators and various modalities of assessment (e.g., macroscopic, microscopic, and radiological). Lack of instructional texts describing how to prepare histological samples and evaluate bone under the microscope has been a restricting factor in the widespread use of current histological methods within the field of forensic anthropology. The limited use of histological methods for age estimation often lies in the misunderstanding that the preparation and evaluation of cortical bone thin sections is a highly technical and an expensive endeavor. Like any method of age estimation, the researcher/practitioner must be guided through the analytical process to ensure reliable and repeatable results. This chapter provides a step-by-step instructional guide in the preparation and evaluation of histological samples removed from the sixth rib for histological age estimation.

Key words:

Histomorphology Histomorphometry Microscopy Age Estimation Forensic Anthropology 


  1. 1.
    Ahlqvist J, Damsten O (1969) A modification of Kerley’s method for microscopic determination of age in human bone. J Forensic Sci 14:205–212PubMedGoogle Scholar
  2. 2.
    Cho H, Stout SD, Madsen RW, Streeter MA (2002) Population-specific histological age-estimating method: a model for known African-American and European-American skeletal remains. J Forensic Sci 47(1):12–18PubMedGoogle Scholar
  3. 3.
    Clarke DF (1987) Histological and radiographic variation in the parietal bone in a cadaveric population. Thesis, Anatomy Department, The University of QueenslandGoogle Scholar
  4. 4.
    Cool SM, Hendrikz JK, Wood WB (1995) Microscopic age changes in the human occipital bone. J Forensic Sci 40(5):789–796PubMedGoogle Scholar
  5. 5.
    Curtis J (2004) Estimation of age at death from the microscopic appearance of the frontal bone. Masters Thesis, University of Indianapolis, IndianaGoogle Scholar
  6. 6.
    Ericksen MF (1991) Histological estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol 84:171–179PubMedCrossRefGoogle Scholar
  7. 7.
    Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–164PubMedCrossRefGoogle Scholar
  8. 8.
    Kim Y, Kim D, Park D, Lee J, Chung N, Lee W, Han S (2007) Assessment of histomorphological features of the sternal end of the fourth rib for age estimation in Koreans. J Forensic Sci 52(6):1237–1241PubMedCrossRefGoogle Scholar
  9. 9.
    Singh IJ, Gunberg DL (1970) Estimation of age at death in human males from quantitative histology of bone fragments. Am J Phys Anthropol 33:373–382PubMedCrossRefGoogle Scholar
  10. 10.
    Stout SD (1986) The use of bone histomorphometry in skeletal identification: the case of Francisco Pizarro. J Forensic Sci 31(1):296–300PubMedGoogle Scholar
  11. 11.
    Stout SD, Paine RR (1992) Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol 87:111–115PubMedCrossRefGoogle Scholar
  12. 12.
    Stout SD, Dietz WH, Işcan MY, Loth SR (1994) Estimation of age at death using cortical histomorphometry of the sternal end of the fourth rib. J Forensic Sci 39(3):778–784PubMedGoogle Scholar
  13. 13.
    Stout SD, Marchello AP, Perotti B (1996) Brief communication: a test and correction of the clavicle method of Stout and Paine for histological age estimation of skeletal remains. Am J Phys Anthropol 100:139–142PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson DD (1979) The core technique in the determination of age at death in skeletons. J Forensic Sci 24(4):902–915PubMedGoogle Scholar
  15. 15.
    Thompson DD, Galvin CA (1983) Estimation of age at death by tibial osteon remodeling in an autopsy series. Forensic Sci Int 22:203–211PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshino M, Imaizumi K, Miyasaka S, Sueshige S (1994) Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int 64:191–198PubMedCrossRefGoogle Scholar
  17. 17.
    Wu K, Schubeck H, Frost M, Villanueva A (1970) Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calc Tissue Res 6:204–219CrossRefGoogle Scholar
  18. 18.
    Frost HM (1987) Secondary osteon populations: an algorithm for determining mean bone tissue age. Yrbk Phys Anthropol 30:221–238CrossRefGoogle Scholar
  19. 19.
    Frost HM (1987) Secondary osteon population densities: an algorithm for estimating missing osteons. Yrbk Phys Anthropol 30:239–254CrossRefGoogle Scholar
  20. 20.
    Dudar JC, Pfeiffer S, Saunders SR (1993) Evaluation of morphological and histological adult skeletal age-at-death estimation techniques using ribs. J Forensic Sci 38(3):677–685PubMedGoogle Scholar
  21. 21.
    Crowder C (2005) Evaluating the use of quantitative bone histology to estimate adult age at death. Ph.D. dissertation, University of Toronto, Department of AnthropologyGoogle Scholar
  22. 22.
    Crowder C, Rosella L (2006) Assessment of intra- and intercostal variation in rib histomorphometry: its impact on evidentiary examination. J Forensic Sci 52(2):271–276CrossRefGoogle Scholar
  23. 23.
    Frost HM (1958) Preparation of thin undecalcified bone sections by rapid manual method. Biotech Histochem 33(6):273–277CrossRefGoogle Scholar
  24. 24.
    Maat G, Van Den Bos R, Aarents M (2001) Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s ‘rapid manual method’. Int J Osteoarchaeol 11(5):366–374CrossRefGoogle Scholar
  25. 25.
    Anderson C (1982) Manual for the examination of bone. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Steadman D, DiAntonio L, Wilson J, Sheridan K, Tammariello S (2006) The effects of chemical and heat and maceration on the recovery of nuclear and mitochondrial DNA from bone. J Forensic Sci 51(1):11–17PubMedCrossRefGoogle Scholar
  27. 27.
    Fenton TW, Birkby WH, Cornelison JC (2003) A fast and safe nonbleaching method for forensic skeletal preparation. J Forensic Sci 48(2):274–276PubMedGoogle Scholar
  28. 28.
    Rennick SL, Fenton TW, Foran DR (2005) The effects of skeletal preparation techniques on DNA from human and nonhuman bone. J Forensic Sci 50(5):1016–1019PubMedCrossRefGoogle Scholar
  29. 29.
    Pfeiffer S (2000) Palaeohistory: health and disease. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss Inc., New YorkGoogle Scholar
  30. 30.
    Frost HM (1969) Tetracycline based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237PubMedCrossRefGoogle Scholar
  31. 31.
    Robling AG, Stout SD (2000) Histomorphometry of human cortical bone: applications to age estimation. In: Katzenburg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss Inc., New YorkGoogle Scholar
  32. 32.
    Giles E, Klepinger LL (1988) Confidence intervals for estimates based on linear regression in forensic anthropology. J Forensic Sci 33(5):1218–1222PubMedGoogle Scholar
  33. 33.
    Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christian Crowder
    • 1
  • Jarred Heinrich
    • 2
  • Sam D. Stout
    • 3
  1. 1.Office of Chief Medical ExaminerNew YorkUSA
  2. 2.Department of AnthropologyUniversity of TorontoTorontoCanada
  3. 3.Department of AnthropologyThe Ohio State UniversityColumbusUSA

Personalised recommendations