Skip to main content

Chimeric Antigen Receptors for T-Cell Based Therapy

  • Protocol
  • First Online:
Antibody Engineering

Abstract

The Chimeric Antigen Receptor (CAR) consists of an antibody-derived targeting domain fused with T-cell signaling domains that, when expressed by a T-cell, endows the T-cell with antigen specificity determined by the targeting domain of the CAR. CARs can potentially redirect the effector functions of a T-cell towards any protein and nonprotein target expressed on the cell surface as long as an antibody or similar targeting domain is available. This strategy thereby avoids the requirement of antigen processing and presentation by the target cell and is applicable to nonclassical T-cell targets like carbohydrates. This circumvention of HLA-restriction means that the CAR T-cell approach can be used as a generic tool broadening the potential of applicability of adoptive T-cell therapy. Proof-of-principle studies focusing upon the investigation of the potency of CAR T-cells have primarily focused upon the genetic modification of human and mouse T-cells for therapy. This chapter focuses upon methods to modify T-cells from both species to generate CAR T-cells for functional testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86:10024–10028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brenner MK, Heslop HE (2010) Adoptive T cell therapy of cancer. Curr Opin Immunol 22:251–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE (2010) Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 10:77–90

    Article  CAS  PubMed  Google Scholar 

  4. Morgan RA, Dudley ME, Rosenberg SA (2010) Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 16:336–341

    Article  CAS  PubMed  Google Scholar 

  5. Movassagh M, Boyer O, Burland MC, Leclercq V, Klatzmann D, Lemoine FM (2000) Retrovirus-mediated gene transfer into T cells: 95 % transduction efficiency without further in vitro selection. Hum Gene Ther 11:1189–1200

    Article  CAS  PubMed  Google Scholar 

  6. Lee J, Sadelain M, Brentjens R (2009) Retroviral transduction of murine primary T lymphocytes. Methods Mol Biol 506:83–96

    Article  CAS  PubMed  Google Scholar 

  7. Riviere I, Gallardo HF, Hagani AB, Sadelain M (2000) Retroviral-mediated gene transfer in primary murine and human T-lymphocytes. Mol Biotechnol 15:133–142

    Article  CAS  PubMed  Google Scholar 

  8. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Pollok KE, Hanenberg H, Noblitt TW, Schroeder WL, Kato I, Emanuel D, Williams DA (1998) High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J Virol 72:4882–4892

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Le Doux JM, Landazuri N, Yarmush ML, Morgan JR (2001) Complexation of retrovirus with cationic and anionic polymers increases the efficiency of gene transfer. Hum Gene Ther 12:1611–1621

    Article  PubMed  Google Scholar 

  11. DiGiusto DL, Cooper LJ (2007) Preparing clinical grade Ag-specific T cells for adoptive immunotherapy trials. Cytotherapy 9:613–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lamers CH, van Elzakker P, van Steenbergen SC, Sleijfer S, Debets R, Gratama JW (2008) Retronectin-assisted retroviral transduction of primary human T lymphocytes under good manufacturing practice conditions: tissue culture bag critically determines cell yield. Cytotherapy 10:406–416

    Article  CAS  PubMed  Google Scholar 

  13. Ferrand C, Robinet E, Contassot E, Certoux JM, Lim A, Herve P, Tiberghien P (2000) Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansion on the T cell receptor beta chain hypervariable region repertoire. Hum Gene Ther 11:1151–1164

    Article  CAS  PubMed  Google Scholar 

  14. Sauce D, Bodinier M, Garin M, Petracca B, Tonnelier N, Duperrier A, Melo JV, Apperley JF, Ferrand C, Herve P, Lang F, Tiberghien P, Robinet E (2002) Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein-Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood 99:1165–1173

    Article  CAS  PubMed  Google Scholar 

  15. Sauce D, Tonnelier N, Duperrier A, Petracca B, de Carvalho Bittencourt M, Saadi M, Saas P, Ferrand C, Herve P, Tiberghien P, Robinet E (2002) Influence of ex vivo expansion and retrovirus-mediated gene transfer on primary T lymphocyte phenotype and functions. J Hematother Stem Cell Res 11:929–940

    Article  CAS  PubMed  Google Scholar 

  16. Gilham DE, Lie ALM, Taylor N, Hawkins RE (2010) Cytokine stimulation and the choice of promoter are critical factors for the efficient transduction of mouse T cells with HIV-1 vectors. J Gene Med 12:129–136

    CAS  PubMed  Google Scholar 

  17. Swainson L, Mongellaz C, Adjali O, Vicente R, Taylor N (2008) Lentiviral transduction of immune cells. Methods Mol Biol 415:301–320

    CAS  PubMed  Google Scholar 

  18. Jensen MC, Clarke P, Tan G, Wright C, Chung-Chang W, Clark TN, Zhang F, Slovak ML, Wu AM, Forman SJ, Raubitschek A (2000) Human T lymphocyte genetic modification with naked DNA. Mol Ther 1:49–55

    Article  CAS  PubMed  Google Scholar 

  19. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kampgen E, Schuler G, Abken H, Schaft N, Dorrie J (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 16:596–604

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B, Kiessling R, Blankenstein T, Abken H, Charo J (2008) Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci U S A 105:17481–17486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pegram HJ, Kershaw MH, Darcy PK (2009) Genetic modification of natural killer cells for adoptive cellular immunotherapy. Immunotherapy 1:623–630

    CAS  PubMed  Google Scholar 

  23. Biglari A, Southgate TD, Fairbairn LJ, Gilham DE (2006) Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo. Gene Ther 13:602–610

    Article  CAS  PubMed  Google Scholar 

  24. Pouw NM, Westerlaken EJ, Willemsen RA, Debets R (2007) Gene transfer of human TCR in primary murine T cells is improved by pseudo-typing with amphotropic and ecotropic envelopes. J Gene Med 9:561–570

    Article  CAS  PubMed  Google Scholar 

  25. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–1034

    CAS  PubMed  Google Scholar 

  26. Weijtens ME, Willemsen RA, Hart EH, Bolhuis RL (1998) A retroviral vector system ‘STITCH’ in combination with an optimized single chain antibody chimeric receptor gene structure allows efficient gene transduction and expression in human T lymphocytes. Gene Ther 5:1195–1203

    Article  CAS  PubMed  Google Scholar 

  27. Fehse B, Kustikova OS, Li Z, Wahlers A, Bohn W, Beyer WR, Chalmers D, Tiberghien P, Kuhlcke K, Zander AR, Baum C (2002) A novel ‘sort-suicide’ fusion gene vector for T cell manipulation. Gene Ther 9:1633–1638

    Article  CAS  PubMed  Google Scholar 

  28. Swift S, Lorens J, Achacoso P, Nolan GP (2001) Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Curr Protoc Immunol 10:14–29, Chapter 10, Unit 10 17 C

    Google Scholar 

  29. Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 65:2220–2224

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Lamers CH, van Elzakker P, Luider BA, van Steenbergen SC, Sleijfer S, Debets R, Gratama JW (2008) Retroviral vectors for clinical immunogene therapy are stable for up to 9 years. Cancer Gene Ther 15:268–274

    Article  CAS  PubMed  Google Scholar 

  31. Lamers CH, Willemsen R, van Elzakker P, van Steenbergen-Langeveld S, Broertjes M, Oosterwijk-Wakka J, Oosterwijk E, Sleijfer S, Debets R, Gratama JW (2011) Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117:72–82

    Article  CAS  PubMed  Google Scholar 

  32. Schroten C, Kraaij R, Veldhoven JL, Berrevoets CA, den Bakker MA, Ma Q, Sadelain M, Bangma CH, Willemsen RA, Debets R (2010) T cell activation upon exposure to patient-derived tumor tissue: a functional assay to select patients for adoptive T cell therapy. J Immunol Methods 359:11–20

    Article  CAS  PubMed  Google Scholar 

  33. Lamers CH, Willemsen RA, Luider BA, Debets R, Bolhuis RL (2002) Protocol for gene transduction and expansion of human T lymphocytes for clinical immunogene therapy of cancer. Cancer Gene Ther 9:613–623

    Article  CAS  PubMed  Google Scholar 

  34. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, Yeh R, Capacio V, Olszewska M, Hosey J, Sadelain M, Brentjens RJ, Riviere I (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 32:169–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pouw N, Treffers-Westerlaken E, Kraan J, Wittink F, ten Hagen T, Verweij J, Debets R (2010) Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunol Immunother 59:921–931

    Article  CAS  PubMed  Google Scholar 

  36. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, Carroll RG, Riley JL, June CH (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther 15:981–988

    Article  CAS  PubMed  Google Scholar 

  37. Pouw N, Treffers-Westerlaken E, Mondino A, Lamers C, Debets R (2010) TCR gene-engineered T cell: limited T cell activation and combined use of IL-15 and IL-21 ensure minimal differentiation and maximal antigen-specificity. Mol Immunol 47:1411–1420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work has been supported by the European Union FP6 program “ATTACK” and FP7 Network “ATTRACT.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gilham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cheadle, E.J. et al. (2012). Chimeric Antigen Receptors for T-Cell Based Therapy. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics