Skip to main content

Monoclonal Antibody Expression in Mammalian Cells

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 907))

Abstract

In the past two decades, the production levels for monoclonal antibodies in mammalian expression systems have improved dramatically. Single cell productivity for monoclonal antibodies has increased 20–50 fold due to the improvements in expression hosts, expression vectors, cell culture media, and production processes. However, most of these improvements are proprietary to large pharmaceutical/biotech companies and involve large steel-tank bioreactors. Therefore, these processes are difficult for small companies and academic labs to reproduce. Transient expression in mammalian cells has recently been used very widely for monoclonal antibody expression. Cell line and expression vector engineering increased expression levels to several hundred milligrams per liter. The availability of highly effective transfection reagents and disposable bioreactors make the transient expression process an efficient and cost-effective way to make recombinant antibodies in large quantity. Here, we describe the protocols for small- to mid-scale transient expression of monoclonal antibodies in shake-flasks and for large-scale production in WAVE bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck A, Wurch T, Reichert JM (2011) 6th Annual European Antibody Congress 2010: November 29–December 1, 2010, Geneva, Switzerland. MAbs 3:111–132

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  PubMed  Google Scholar 

  3. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  PubMed  Google Scholar 

  4. Jones Susan Dana, Castillo Francisco J, Levine Howard L (2007) Advances in the development of therapeutic monoclonal antibodies. BioPharm Int 96–114

    Google Scholar 

  5. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  6. Havenga MJ, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G et al (2008) Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 100:273–283

    Article  CAS  PubMed  Google Scholar 

  7. Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32:109–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175

    Article  CAS  Google Scholar 

  9. Kaufman RJ, Schimke RT (1981) Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol Cell Biol 1:1069–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Urlaub G, Kas E, Carothers AM, Chasin LA (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:405–412

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J Mol Biol 159:601–621

    Article  CAS  PubMed  Google Scholar 

  12. Ringold G, Dieckmann B, Lee F (1981) Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells. J Mol Appl Genet 1:165–175

    CAS  PubMed  Google Scholar 

  13. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (NY) 8:662–667

    Article  CAS  Google Scholar 

  14. de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 34:179–190

    Article  PubMed  Google Scholar 

  15. Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P et al (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437

    Article  CAS  PubMed  Google Scholar 

  16. Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    Article  CAS  PubMed  Google Scholar 

  17. Benton T, Chen T, McEntee M, Fox B, King D, Crombie R, Thomas TC, Bebbington C (2002) The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology 38:43–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bianchi AA, McGrew JT (2003) High-level expression of full-length antibodies using trans-complementing expression vectors. Biotechnol Bioeng 84:439–444

    Article  CAS  PubMed  Google Scholar 

  19. Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL et al (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21:553–558

    Article  CAS  PubMed  Google Scholar 

  20. Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, De JM, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87:29–42

    Article  CAS  PubMed  Google Scholar 

  21. Hacker DL, De JM, Wurm FM (2009) 25 Years of recombinant proteins from reactor-grown cells—where do we go from here? Biotechnol Adv 27:1023–1027

    Article  CAS  PubMed  Google Scholar 

  22. Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  PubMed  Google Scholar 

  23. Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-Liter transient transfection. Cytotechnology 38:15–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237

    Article  CAS  PubMed  Google Scholar 

  25. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    Article  PubMed Central  PubMed  Google Scholar 

  26. Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75:197–203

    Article  CAS  PubMed  Google Scholar 

  27. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De JM, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhang J, Liu X, Bell A, To R, Baral TN, Azizi A, Li J, Cass B, Durocher Y (2009) Transient expression and purification of chimeric heavy chain antibodies. Protein Exp Purif 65:77–82

    Article  CAS  Google Scholar 

  29. Backliwal G, Hildinger M, Chenuet S, Dejesus M, Wurm FM (2008) Coexpression of acidic fibroblast growth factor enhances specific productivity and antibody titers in transiently transfected HEK293 cells. Nat Biotechnol 25:162–166

    CAS  Google Scholar 

  30. Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DL, Wurm FM (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189

    Article  CAS  PubMed  Google Scholar 

  31. Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153:22–26

    Article  CAS  PubMed  Google Scholar 

  32. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103:542–551

    Article  CAS  PubMed  Google Scholar 

  33. Codamo J, Munro TP, Hughes BS, Song M, Gray PP (2011) Enhanced CHO cell-based transient gene expression with the epi-CHO expression system. Mol Biotechnol 48:109–115

    Article  CAS  PubMed  Google Scholar 

  34. Silla T, Haal I, Geimanen J, Janikson K, Abroi A, Ustav E, Ustav M (2005) Episomal maintenance of plasmids with hybrid origins in mouse cells. J Virol 79:15277–15288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Product information and use protocols for FuGENE HD and X-tremeGENE HP DNA transfection reagents. www.roche-applied-science.com. 2011

  36. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Werner S, Eibl R, Lettenbauer C, Roll M, Eibl D, De JM, Zhang X, Stettler M, Tissot S, Burki C et al (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers—a Swiss contribution. Chimia (Aarau) 64:819–823

    Article  CAS  Google Scholar 

  38. Zhang X, Stettler M, De SD, Perrone M, Parolini N, Discacciati M, De JM, Hacker D, Quarteroni A, Wurm F (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53

    PubMed  Google Scholar 

  39. Kalmbach A, Bordas R, Oncul AA, Thevenin D, Genzel Y, Reichl U (2011) Experimental characterization of flow conditions in 2- and 20-L bioreactors with wave-induced motion. Biotechnol Prog 27:402–409

    Article  CAS  PubMed  Google Scholar 

  40. Raymond C, Tom R, Perret S, Moussouami P, L’abbe D, St-Laurent G, Durocher Y (2011) A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55(1):44–51

    Article  CAS  PubMed  Google Scholar 

  41. Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) GMP production and testing of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy 6:554–562

    Article  CAS  PubMed  Google Scholar 

  42. Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Prog 16:688–692

    Article  CAS  PubMed  Google Scholar 

  43. Franek F, Eckschlager T, Katinger H (2003) Enhancement of monoclonal antibody production by lysine-containing peptides. Biotechnol Prog 19:169–174

    Article  CAS  PubMed  Google Scholar 

  44. Wulhfard S, Baldi L, Hacker DL, Wurm F (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148:128–132

    Article  CAS  PubMed  Google Scholar 

  45. Wulhfard S, Tissot S, Bouchet S, Cevey J, De JM, Hacker DL, Wurm FM (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24:458–465

    Article  CAS  PubMed  Google Scholar 

  46. WAVE Bioreactor Literature. www.gelifesciences.com/aptrix/upp01077.nsf/Content/wave_bioreactor_home∼wave_literature. 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyan David Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, R.Y., Shen, W.D. (2012). Monoclonal Antibody Expression in Mammalian Cells. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics