Skip to main content

Culture Systems: Sequential

  • Protocol
  • First Online:
Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 912))

Abstract

Methods for the culture of preimplantation human embryos evolved primarily from those used for mouse embryos. The initial method was usually culture in a single medium in microdrops of medium under oil for 2–3 days before transfer. Subsequently, extended culture over the whole preimplantation period was used. The debate at present is which system is best, a sequential series of media to accommodate changes in physiology and metabolism of the embryo from a 1-cell zygote to the differentiated blastocyst stage or a single-step culture regime using the same culture medium throughout the preimplantation period. Aspects of the advantages and disadvantages of these two culture systems will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biggers JD, Culture techniques in animal and human reproductive biology. Workshop on evidence based assisted reproductive technologies (ART). Food and Drug Administration, Department of Health and Human Services, National Institutes of Health, Wednesday, September 18, 2002. www.fda.gov/…/NewsEvents/WorkshopsMeetingsConferences/TranscriptsMinutes/UCM054465.pdf. Accessed 18 June 2011

    Google Scholar 

  2. Biggers JD, Summers MC (2008) Choosing a culture medium: making informed choices. Fertil Steril 90:473–483

    Article  PubMed  Google Scholar 

  3. Quinn P (2012) Short culture: day 1/day 2/day 3 embryo culture. In: Nagy ZP, Varghese AC, Agarwal A (eds) Practical manual of in vitro fertilization. Advanced methods and novel devices. Springer, New York, NY

    Google Scholar 

  4. Gardner DK (1998) Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49:83–102

    Article  PubMed  CAS  Google Scholar 

  5. Quinn P (2003) Media used in the assisted reproductive technologies laboratories. In: Patrizio P, Tucker MJ, Guelman V (eds) A color atlas for human assisted reproduction: laboratory and clinical insights. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  6. Handyside AH et al (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770

    Article  PubMed  CAS  Google Scholar 

  7. Lane M, Gardner DK (2001) Blastomere homeostasis. In: Gardner DK, Lane M (eds) ART and the human blastocyst. Springer, New York, NY

    Google Scholar 

  8. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461

    Article  PubMed  CAS  Google Scholar 

  9. Brison DR et al (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19:2319–2324

    Article  PubMed  CAS  Google Scholar 

  10. Reed ML et al (2009) Continuous uninterrupted single medium culture without medium renewal versus sequential medium culture: a sibling embryo study. Fertil Steril 92:1783–1786

    Article  PubMed  Google Scholar 

  11. Wagh PV, Lippes J (1993) Human oviductal fluid proteins. V. Identification of human oviductin-I as alpha-fetoprotein. Fertil Steril 59:148–156

    PubMed  CAS  Google Scholar 

  12. Keel BA et al (1991) Synergistic action of purified α-fetoprotein and growth factors on the proliferation of porcine granulose cells in monolayer culture. Endocrinology 129:217–225

    Article  PubMed  CAS  Google Scholar 

  13. Gardner DK (2008) Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev 20:9–18

    Article  PubMed  Google Scholar 

  14. Whitten WK (1956) Culture of tubal mouse ova. Nature 177:96

    Article  PubMed  CAS  Google Scholar 

  15. Brinster RL (1963) A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Exp Cell Res 32:205–208

    Article  PubMed  CAS  Google Scholar 

  16. Krebs HA, Henseleit K (1932) Untersuchungen uber die harnstoffbildung im tierkorper. Zeirschrift fur Pysikalische Chemie 210:33–66

    CAS  Google Scholar 

  17. Quinn P, Kerin JF, Warnes GM (1985) Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 44:493–498

    PubMed  CAS  Google Scholar 

  18. Tervit HR, Whittinghan DG, Rowson LEA (1972) Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 30:493–497

    Article  PubMed  CAS  Google Scholar 

  19. Borland RM et al (1980) Elemental composition of fluid in the human fallopian tube. J Reprod Fertil 58:479–482

    Article  PubMed  CAS  Google Scholar 

  20. Lane M, Gardner DK (2000) Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med 18:195–204

    Article  PubMed  CAS  Google Scholar 

  21. Quinn P et al (1995) Successful human in vitro fertilization using a modified human tubal fluid medium lacking glucose and phosphate ions. Fertil Steril 63:922–924

    PubMed  CAS  Google Scholar 

  22. Pool TB, Atiee SH, Martin JE (1998) Oocyte and embryo culture: basic concepts and recent advances. In: May JV (ed) Assisted reproduction: laboratory considerations. Infertil Reprod Med Clin N Am 9:181–203

    Google Scholar 

  23. Quinn P, Wales RG (1971) Adenosine triphosphate content of preimplantation mouse embryos. J Reprod Fertil 25:133–135

    Article  PubMed  CAS  Google Scholar 

  24. Quinn P, Wales RG (1973) The effect of culture in vitro on the levels of adenosine triphosphate in preimplantation mouse embryos. J Reprod Fertil 32:231–241

    Article  PubMed  CAS  Google Scholar 

  25. Hoppe PC, Pitts S (1973) Fertilization in vitro and development of mouse ova. Biol Reprod 8:420–426

    PubMed  CAS  Google Scholar 

  26. Biggers JD (2001) Thoughts on embryo culture conditions. Reprod Biomed Online 4(Suppl 1):30–38

    Google Scholar 

  27. Lane M et al (1998) Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo. Mol Reprod Dev 50:443–450

    Article  PubMed  CAS  Google Scholar 

  28. Rogers BJ, Yanagimachi R (1976) Competitive effect of magnesium on the calcium-dependent acrosome reaction in guinea pig spermatozoa. Biol Reprod 15:614–619

    Article  PubMed  CAS  Google Scholar 

  29. Leese HJ (1998) Human embryo culture: back to nature. J Assist Reprod Genet 15:466–468

    Article  PubMed  CAS  Google Scholar 

  30. Gardner DK et al (1996) Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 65:349–353

    PubMed  CAS  Google Scholar 

  31. Pool TB (2001) Summary: five take-home lessons regarding the optimization of culture media and the use of commercial products for human embryo culture. In: Quinn P (ed) ART media. Commercial and in-house products. Proceedings of the 5th Annual Symposium of the American Association of Bioanalysts College of Reproductive Biology, Las Vegas, AAB, St. Louis, MO, 5th May 2001

    Google Scholar 

  32. Bavister BD, McKiernan SH (1993) Regulation of hamster embryo development in vitro by amino acids. In: Bavister BD (ed) Preimplantation embryo development. Springer, New York, NY

    Chapter  Google Scholar 

  33. Gardner DK, Lane M (1996) Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 11:2703–2712

    Article  PubMed  CAS  Google Scholar 

  34. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99:673–679

    Article  PubMed  CAS  Google Scholar 

  35. Biggers JD, McGinnis LK, Lawitts JA (2005) One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod 20:3376–3384

    Article  PubMed  CAS  Google Scholar 

  36. Gardner DK et al (2011) Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod 26:1981–1986

    Article  PubMed  CAS  Google Scholar 

  37. Lane M, Gardner DK (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod 11:1975–1978

    Article  PubMed  CAS  Google Scholar 

  38. Edwards LJ, Williams DA, Gardner DK (1998) Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev 50:434–442

    Article  PubMed  CAS  Google Scholar 

  39. Tay JI et al (1997) Human tubal fluid: ­production, nutrient composition and response to adrenergic agents. Hum Reprod 12: 2451–2456

    Article  PubMed  CAS  Google Scholar 

  40. Steptoe PC, Edwards RG, Purdy JM (1971) Human blastocysts grown in culture. Nature 229:132–133

    Article  PubMed  CAS  Google Scholar 

  41. Van Winkle LJ (1988) Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta 947:173–208

    Article  PubMed  Google Scholar 

  42. Schultz GA et al (1981) Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 61:387–393

    Article  PubMed  CAS  Google Scholar 

  43. Kolajora M, Baltz JM (1999) Volume-regulated anion and organic osmolytes channels in mouse zygotes. Biol Reprod 60:964–972

    Article  Google Scholar 

  44. Gardner DK, Lane M (1993) Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 48:377–385

    Article  PubMed  CAS  Google Scholar 

  45. Houghton FD et al (2002) Non-invasive amino acid turnover predicts human embryo development capacity. Hum Reprod 17:999–1005

    Article  PubMed  CAS  Google Scholar 

  46. He Y et al (2007) Glutamine synthetase is essential in early mouse embryogenesis. Dev Dyn 236:1865–1875

    Article  PubMed  CAS  Google Scholar 

  47. Lane M, Gardner DK (2003) Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod 69:1109–1117

    Article  PubMed  CAS  Google Scholar 

  48. Quintans CJ et al (2005) Human IVF outcome in media containing either alanyl-l-glutamine or glycyl-l-glutamine. Fertil Steril 84(Suppl 1):S456

    Article  Google Scholar 

  49. Biggers JD, McGinnis LK, Lawitts JA (2004) Enhanced effect of glycyl-l-glutamine on mouse preimplantation embryos in vitro. Reprod Biomed Online 9(1):59–69

    Article  PubMed  CAS  Google Scholar 

  50. Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130:432–437

    Article  PubMed  CAS  Google Scholar 

  51. Lane M, Hooper K, Gardner DK (2001) Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet 18:519–525

    Article  PubMed  CAS  Google Scholar 

  52. Lane M, Gardner DK (1998) Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod 13:991–997

    Article  PubMed  CAS  Google Scholar 

  53. McKiernan SH, Bavister BD (2000) Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod 15:157–164

    Article  PubMed  CAS  Google Scholar 

  54. Kane MT (1988) The effects of water-soluble vitamins on the expansion of rabbit blastocysts in vitro. J Exp Zool 245:220–223

    Article  PubMed  CAS  Google Scholar 

  55. Behr B et al (1999) Preliminary clinical experience with human blastocyst development in vitro without co-culture. Hum Reprod 14:454–457

    Article  PubMed  CAS  Google Scholar 

  56. Kane MT, Morgan PM, Coonan C (1997) Peptide growth factors and preimplantation development. Hum Reprod Update 3:137–157

    Article  PubMed  CAS  Google Scholar 

  57. Bavister B, Baltz J (2002) Influence of culture media on embryo development. In: De Jonge CJ, Barratt CLR (eds) Assisted reproductive technology. Accomplishments and new horizons. Cambridge University Press, Cambridge

    Google Scholar 

  58. Origio (2011) Embryogen. http://www.origio.com/∼/media/Origio/Files/PDS/MEC/EmbryoGen_070611_v1_web.ashx. Accessed 16 Sept 2011

  59. Rawlins RG (2001) Modern media for in vitro fertilization—an evolution. In: Quinn P (ed) ART media. Commercial and in-house products. Proceedings of the 5th Annual Symposium of the American Association of Bioanalysts College of Reproductive Biology, Las Vegas, AAB, St. Louis, MO, 5th May 2001, pp 43–65

    Google Scholar 

  60. Swain JE (2010) Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 21:6–16

    Article  PubMed  Google Scholar 

  61. Whitten WK (1957) Culture of tubal ova. Nature 179:1081–1082

    Article  PubMed  CAS  Google Scholar 

  62. Whitten WK (1970) Nutrient requirements for the culture of preimplantation embryos in vitro. Adv Biosci 6:129–141

    CAS  Google Scholar 

  63. Ferring Pharmaceuticals (1999) The Assisted Reproductive Global Monitor, May Council Meeting, Special Meeting Reporter, Session 1, Council for the Advancement of Ovulation Induction and Assisted Reproductive Technology, Marrs RP, Steinkampf MP (chairpersons)

    Google Scholar 

  64. Phillips KP et al (2000) Intracellular pH regulation in human preimplantation embryos. Hum Reprod 15:896–904

    Article  PubMed  CAS  Google Scholar 

  65. Quinn P, Stone BA, Marrs RP (1990) Suboptimal laboratory conditions can affect pregnancy outcome after embryo transfer on day 1 or day 2 after insemination in vitro. Fertil Steril 53:168–170

    PubMed  CAS  Google Scholar 

  66. Pool TB (2004) Optimizing pH in clinical embryology. J Clin Embryol 7:1–17

    Google Scholar 

  67. Leese HJ et al (2008) Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14:667–672

    Article  PubMed  CAS  Google Scholar 

  68. Higdon HL, Blackhurst DW, Boone WR (2008) Incubator management in an assisted reproductive technology laboratory. Fertil Steril 89:703–710

    Article  PubMed  Google Scholar 

  69. Quinn P (2004) The development and impact of assisted reproductive technologies culture media. Fertil Steril 8:27–29

    Article  Google Scholar 

  70. Heo YS et al (2010) Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 25:613–622

    Article  PubMed  CAS  Google Scholar 

  71. Paria BC, Dey SY (1990) Preimplantation embryo development in vitro: co-operative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA 87:4756–4760

    Article  PubMed  CAS  Google Scholar 

  72. Isachenko E et al (2010) Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab 56:569–576

    PubMed  Google Scholar 

  73. Stanger JD, Quinn P (1982) Fertilization of cumulus-free, zona-intact mouse ova in vitro at high and low sperm concentrations. Gamete Res 5:61–70

    Article  Google Scholar 

  74. Isachenko V (2011) In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online 22:536–544

    Article  PubMed  Google Scholar 

  75. Vajta G et al (2008) The well-of-the-well system: an efficient approach to improve embryo development. Reprod Biomed Online 17:73–81

    Article  PubMed  Google Scholar 

  76. Sepulveda S et al (2009) In vitro development and pregnancy outcomes for human embryos cultured in either a single medium or in a sequential media system. Fertil Steril 91:1765–1770

    Article  PubMed  Google Scholar 

  77. Wirleitner B et al (2010) Individual demands of human embryos on IVF culture medium: influence on blastocyst development and pregnancy outcome. Reprod Biomed Online 21:776–782

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Quinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Quinn, P. (2012). Culture Systems: Sequential. In: Smith, G., Swain, J., Pool, T. (eds) Embryo Culture. Methods in Molecular Biology, vol 912. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-971-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-971-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-970-9

  • Online ISBN: 978-1-61779-971-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics