Advertisement

Integration of Multiple Ubiquitin Signals in Proteasome Regulation

  • Marta Isasa
  • Alice Zuin
  • Bernat CrosasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 910)

Abstract

The ubiquitin–proteasome system has emerged in the last decades as a new paradigm in cell physiology. Ubiquitin is found in fundamental levels of cell regulation, as a target for degradation to the proteasome or as a signal that controls protein function in a complex manner. Even though many aspects of the ubiquitin system remain unexplored, the contributions on the field uncover that ubiquitin represents one of the most sophisticated codes in cellular biology.

The proteasome is an ATP-dependent protease that degrades a large number of protein substrates in the cell. The proteasome recruits substrates by a number of receptors that interact with polyubiquitin. Recently, it has been shown that one of these receptors, Rpn10, is regulated by monoubiquitination. In this chapter, we show an overview of the central aspects of the pathway and describe the methodology to characterize in vitro the monoubiquitination of proteasome subunits.

Key words

Ubiquitin Proteasome Rpn10 Ubiquitin ligase Monoubiquitination 

References

  1. 1.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedGoogle Scholar
  2. 2.
    Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10(10):659–671PubMedGoogle Scholar
  3. 3.
    Burroughs AM, Balaji S, Iyer LM, Aravind L (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18PubMedGoogle Scholar
  4. 4.
    Schlesinger DH, Goldstein G, Niall HD (1975) The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14(10):2214–2218PubMedGoogle Scholar
  5. 5.
    Lenkinski RE, Chen DM, Glickson JD, Goldstein G (1977) Nuclear magnetic resonance studies of the denaturation of ubiquitin. Biochim Biophys Acta 494(1):126–130PubMedGoogle Scholar
  6. 6.
    Ibarra-Molero B, Loladze VV, Makhatadze GI, Sanchez-Ruiz JM (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge–charge interactions to protein stability. Biochemistry 38(25):8138–8149PubMedGoogle Scholar
  7. 7.
    Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642PubMedGoogle Scholar
  8. 8.
    Crosas B, Farras R, Marfany G, Rodriguez MS, Thomson TM (2010) Searching for the boundaries: unlimited expansion of ubiquitin and ubiquitin-like signals in multiple cellular functions. Biochem Soc Trans 38(Pt 1):1–5PubMedGoogle Scholar
  9. 9.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533PubMedGoogle Scholar
  10. 10.
    Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458(7237):422–429PubMedGoogle Scholar
  11. 11.
    Ciechanover A, Ben-Saadon R (2004) N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14(3):103–106PubMedGoogle Scholar
  12. 12.
    Jin J, Li X, Gygi SP, Harper JW (2007) Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447(7148):1135–1138PubMedGoogle Scholar
  13. 13.
    Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37(1):43–55PubMedGoogle Scholar
  14. 14.
    Lee I, Schindelin H (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134(2):268–278PubMedGoogle Scholar
  15. 15.
    Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10(11):755–764PubMedGoogle Scholar
  16. 16.
    Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398–409PubMedGoogle Scholar
  17. 17.
    Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563PubMedGoogle Scholar
  18. 18.
    Ryabov Y, Fushman D (2006) Interdomain mobility in di-ubiquitin revealed by NMR. Proteins 63(4):787–796PubMedGoogle Scholar
  19. 19.
    Jin L, Williamson A, Banerjee S, Philipp I, Rape M (2008) Mechanism of ubiquitin-chain formation by the human anaphase-­promoting complex. Cell 133(4):653–665PubMedGoogle Scholar
  20. 20.
    Harper JW, Schulman BA (2006) Structural complexity in ubiquitin recognition. Cell 124(6):1133–1136PubMedGoogle Scholar
  21. 21.
    Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8(7):700–710PubMedGoogle Scholar
  22. 22.
    Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24(19): 3353–3359PubMedGoogle Scholar
  23. 23.
    Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28(11):598–603PubMedGoogle Scholar
  24. 24.
    Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32(12):561–573PubMedGoogle Scholar
  25. 25.
    Bennett EJ, Harper JW (2008) DNA damage: ubiquitin marks the spot. Nat Struct Mol Biol 15(1):20–22PubMedGoogle Scholar
  26. 26.
    Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Lohr F, Wu CJ, Ashwell JD, Dotsch V, Dikic I, Beyaert R (2008) Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27(26):3739–3745PubMedGoogle Scholar
  27. 27.
    Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H (2009) Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33(5):602–615PubMedGoogle Scholar
  28. 28.
    Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84(2):277–287PubMedGoogle Scholar
  29. 29.
    Sloper-Mould KE, Jemc JC, Pickart CM, Hicke L (2001) Distinct functional surface regions on ubiquitin. J Biol Chem 276(32): 30483–30489PubMedGoogle Scholar
  30. 30.
    Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH (2006) Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 13(3):264–271PubMedGoogle Scholar
  31. 31.
    Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR (2006) Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124(6):1183–1195PubMedGoogle Scholar
  32. 32.
    Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD (2006) The ubiquitin binding domain ZnF UBP ­recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124(6): 1197–1208PubMedGoogle Scholar
  33. 33.
    Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488PubMedGoogle Scholar
  34. 34.
    Pines J, Lindon C (2005) Proteolysis: anytime, any place, anywhere? Nat Cell Biol 7(8):731–735PubMedGoogle Scholar
  35. 35.
    Rape M, Kirschner MW (2004) Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432(7017):588–595PubMedGoogle Scholar
  36. 36.
    Simpson-Lavy KJ, Oren YS, Feine O, Sajman J, Listovsky T, Brandeis M (2010) Fifteen years of APC/cyclosome: a short and impressive biography. Biochem Soc Trans 38(Pt 1): 78–82PubMedGoogle Scholar
  37. 37.
    Yu ZK, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95(19):11324–11329PubMedGoogle Scholar
  38. 38.
    Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278(28):25752–25757PubMedGoogle Scholar
  39. 39.
    Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4(6):799–812PubMedGoogle Scholar
  40. 40.
    Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4(6):813–826PubMedGoogle Scholar
  41. 41.
    Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428(6979):194–198PubMedGoogle Scholar
  42. 42.
    Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428(6979):190–193PubMedGoogle Scholar
  43. 43.
    Cang Y, Zhang J, Nicholas SA, Bastien J, Li B, Zhou P, Goff SP (2006) Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127(5):929–940PubMedGoogle Scholar
  44. 44.
    Zhong W, Feng H, Santiago FE, Kipreos ET (2003) CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423(6942): 885–889PubMedGoogle Scholar
  45. 45.
    Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25(5):1126–1136PubMedGoogle Scholar
  46. 46.
    Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19(5):607–618PubMedGoogle Scholar
  47. 47.
    Leung-Pineda V, Huh J, Piwnica-Worms H (2009) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 69(6):2630–2637PubMedGoogle Scholar
  48. 48.
    Munoz MA, Saunders DN, Henderson MJ, Clancy JL, Russell AJ, Lehrbach G, Musgrove EA, Watts CK, Sutherland RL (2007) The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle 6(24):3070–3077PubMedGoogle Scholar
  49. 49.
    Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145PubMedGoogle Scholar
  50. 50.
    Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22PubMedGoogle Scholar
  51. 51.
    Finley D (2009) Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu Rev Biochem 78:477–513PubMedGoogle Scholar
  52. 52.
    Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5(11):815–822PubMedGoogle Scholar
  53. 53.
    Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 7(3):627–637PubMedGoogle Scholar
  54. 54.
    Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471PubMedGoogle Scholar
  55. 55.
    Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory ­complex PAN serves multiple functions in protein degradation. Mol Cell 11(1):69–78PubMedGoogle Scholar
  56. 56.
    Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067PubMedGoogle Scholar
  57. 57.
    Kohler A, Bajorek M, Groll M, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2001) The substrate translocation channel of the proteasome. Biochimie 83(3–4): 325–332PubMedGoogle Scholar
  58. 58.
    Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7(6):1143–1152PubMedGoogle Scholar
  59. 59.
    Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19PubMedGoogle Scholar
  60. 60.
    Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G (2006) Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol 75:125–169PubMedGoogle Scholar
  61. 61.
    Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, peptide production, and interactions with viral proteins. Curr Protein Pept Sci 5(3):153–161PubMedGoogle Scholar
  62. 62.
    Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20(2):192–196PubMedGoogle Scholar
  63. 63.
    Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623PubMedGoogle Scholar
  64. 64.
    Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1(4):221–226PubMedGoogle Scholar
  65. 65.
    Eckardt NA (2003) Characterization of the last subunit of the Arabidopsis COP9 signalosome. Plant Cell 15(3):580–581PubMedGoogle Scholar
  66. 66.
    Harari-Steinberg O, Chamovitz DA (2004) The COP9 signalosome: mediating between kinase signaling and protein degradation. Curr Protein Pept Sci 5(3):185–189PubMedGoogle Scholar
  67. 67.
    Schwechheimer C (2004) The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 1695(1–3):45–54PubMedGoogle Scholar
  68. 68.
    Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286PubMedGoogle Scholar
  69. 69.
    Kim T, Hofmann K, von Arnim AG, Chamovitz DA (2001) PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci 6(8):379–386PubMedGoogle Scholar
  70. 70.
    Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615PubMedGoogle Scholar
  71. 71.
    Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298(5593):608–611PubMedGoogle Scholar
  72. 72.
    Enchev RI, Schreiber A, Beuron F, Morris EP (2010) Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 18(4):518–527PubMedGoogle Scholar
  73. 73.
    Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127(7):1401–1413PubMedGoogle Scholar
  74. 74.
    Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269(10):7059–7061PubMedGoogle Scholar
  75. 75.
    van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16(11):6020–6028PubMedGoogle Scholar
  76. 76.
    Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit Mcb1. J Biol Chem 273(4):1970–1981PubMedGoogle Scholar
  77. 77.
    Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 6(11):1885–1895PubMedGoogle Scholar
  78. 78.
    Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin–proteasome system. Cell 118(1):99–110PubMedGoogle Scholar
  79. 79.
    Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1):99–111PubMedGoogle Scholar
  80. 80.
    Seong KM, Baek JH, Ahn BY, Yu MH, Kim J (2007) Rpn10p is a receptor for ubiquitinated Gcn4p in proteasomal proteolysis. Mol Cells 24(2):194–199PubMedGoogle Scholar
  81. 81.
    Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279(26): 26817–26822PubMedGoogle Scholar
  82. 82.
    Hamazaki J, Sasaki K, Kawahara H, Hisanaga S, Tanaka K, Murata S (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27(19):6629–6638PubMedGoogle Scholar
  83. 83.
    Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 182(4): 663–673PubMedGoogle Scholar
  84. 84.
    Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32(3):415–425PubMedGoogle Scholar
  85. 85.
    Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL (2009) S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 28(13):1867–1877PubMedGoogle Scholar
  86. 86.
    Zhang D, Chen T, Ziv I, Rosenzweig R, Matiuhin Y, Bronner V, Glickman MH, Fushman D (2009) Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol Cell 36(6):1018–1033PubMedGoogle Scholar
  87. 87.
    Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77(4):1783–1786PubMedGoogle Scholar
  88. 88.
    Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10(3):495–507PubMedGoogle Scholar
  89. 89.
    Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407PubMedGoogle Scholar
  90. 90.
    Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y (2009) Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun 390(3):855–860PubMedGoogle Scholar
  91. 91.
    Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8(9):994–1002PubMedGoogle Scholar
  92. 92.
    Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184PubMedGoogle Scholar
  93. 93.
    Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19(2):199–205PubMedGoogle Scholar
  94. 94.
    Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, Kirkpatrick DS, Thomson TM, Finley D, Gygi SP, Crosas B (2010) Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 38(5):733–745PubMedGoogle Scholar
  95. 95.
    Shih HM, Chang CC, Kuo HY, Lin DY (2007) Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 35(Pt 6):1397–1400PubMedGoogle Scholar
  96. 96.
    Stamenova SD, Dunn R, Adler AS, Hicke L (2004) The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Sla1-Rvs167. J Biol Chem 279(16):16017–16025PubMedGoogle Scholar
  97. 97.
    Stawiecka-Mirota M, Pokrzywa W, Morvan J, Zoladek T, Haguenauer-Tsapis R, Urban-Grimal D, Morsomme P (2007) Targeting of Sna3p to the endosomal pathway depends on its interaction with Rsp5p and multivesicular body sorting on its ubiquitylation. Traffic 8(9):1280–1296PubMedGoogle Scholar
  98. 98.
    Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135(4):714–725PubMedGoogle Scholar
  99. 99.
    Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102(5):577–586PubMedGoogle Scholar
  100. 100.
    Huibregtse JM, Yang JC, Beaudenon SL (1997) The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA 94(8):3656–3661PubMedGoogle Scholar
  101. 101.
    Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2007) Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129(1):57–68PubMedGoogle Scholar
  102. 102.
    Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 3:116PubMedGoogle Scholar
  103. 103.
    Kee Y, Lyon N, Huibregtse JM (2005) The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J 24(13):2414–2424PubMedGoogle Scholar
  104. 104.
    Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421PubMedGoogle Scholar
  105. 105.
    Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28(4):359–371PubMedGoogle Scholar
  106. 106.
    Kim HC, Huibregtse JM (2009) Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 29(12):3307–3318PubMedGoogle Scholar
  107. 107.
    Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H, Dikic I (2006) Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8(2):163–169PubMedGoogle Scholar
  108. 108.
    Plant PJ, Lafont F, Lecat S, Verkade P, Simons K, Rotin D (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149(7):1473–1484PubMedGoogle Scholar
  109. 109.
    Dunn R, Klos DA, Adler AS, Hicke L (2004) The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J Cell Biol 165(1):135–144PubMedGoogle Scholar
  110. 110.
    Morrione A, Plant P, Valentinis B, Staub O, Kumar S, Rotin D, Baserga R (1999) mGrb10 interacts with Nedd4. J Biol Chem 274(34):24094–24099PubMedGoogle Scholar
  111. 111.
    Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272(51):32329–32336PubMedGoogle Scholar
  112. 112.
    Seo SR, Lallemand F, Ferrand N, Pessah M, L’Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23(19):3780–3792PubMedGoogle Scholar
  113. 113.
    Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283(5406):1325–1328PubMedGoogle Scholar
  114. 114.
    Dupre S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695(1–3):89–111PubMedGoogle Scholar
  115. 115.
    Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23(11):1972–1984PubMedGoogle Scholar
  116. 116.
    Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Proteasome Regulation Lab, Cell Biology DepartmentInstitute of Molecular Biology of Barcelona (CSIC)BarcelonaSpain

Personalised recommendations