Skip to main content

Integration of Multiple Ubiquitin Signals in Proteasome Regulation

  • Protocol
  • First Online:
Book cover Bioinformatics and Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 910))

Abstract

The ubiquitin–proteasome system has emerged in the last decades as a new paradigm in cell physiology. Ubiquitin is found in fundamental levels of cell regulation, as a target for degradation to the proteasome or as a signal that controls protein function in a complex manner. Even though many aspects of the ubiquitin system remain unexplored, the contributions on the field uncover that ubiquitin represents one of the most sophisticated codes in cellular biology.

The proteasome is an ATP-dependent protease that degrades a large number of protein substrates in the cell. The proteasome recruits substrates by a number of receptors that interact with polyubiquitin. Recently, it has been shown that one of these receptors, Rpn10, is regulated by monoubiquitination. In this chapter, we show an overview of the central aspects of the pathway and describe the methodology to characterize in vitro the monoubiquitination of proteasome subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  2. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10(10):659–671

    PubMed  CAS  Google Scholar 

  3. Burroughs AM, Balaji S, Iyer LM, Aravind L (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18

    PubMed  Google Scholar 

  4. Schlesinger DH, Goldstein G, Niall HD (1975) The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14(10):2214–2218

    PubMed  CAS  Google Scholar 

  5. Lenkinski RE, Chen DM, Glickson JD, Goldstein G (1977) Nuclear magnetic resonance studies of the denaturation of ubiquitin. Biochim Biophys Acta 494(1):126–130

    PubMed  CAS  Google Scholar 

  6. Ibarra-Molero B, Loladze VV, Makhatadze GI, Sanchez-Ruiz JM (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge–charge interactions to protein stability. Biochemistry 38(25):8138–8149

    PubMed  CAS  Google Scholar 

  7. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642

    PubMed  CAS  Google Scholar 

  8. Crosas B, Farras R, Marfany G, Rodriguez MS, Thomson TM (2010) Searching for the boundaries: unlimited expansion of ubiquitin and ubiquitin-like signals in multiple cellular functions. Biochem Soc Trans 38(Pt 1):1–5

    PubMed  CAS  Google Scholar 

  9. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    PubMed  CAS  Google Scholar 

  10. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458(7237):422–429

    PubMed  CAS  Google Scholar 

  11. Ciechanover A, Ben-Saadon R (2004) N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14(3):103–106

    PubMed  CAS  Google Scholar 

  12. Jin J, Li X, Gygi SP, Harper JW (2007) Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447(7148):1135–1138

    PubMed  CAS  Google Scholar 

  13. Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37(1):43–55

    PubMed  CAS  Google Scholar 

  14. Lee I, Schindelin H (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134(2):268–278

    PubMed  CAS  Google Scholar 

  15. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10(11):755–764

    PubMed  CAS  Google Scholar 

  16. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398–409

    PubMed  CAS  Google Scholar 

  17. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

    PubMed  CAS  Google Scholar 

  18. Ryabov Y, Fushman D (2006) Interdomain mobility in di-ubiquitin revealed by NMR. Proteins 63(4):787–796

    PubMed  CAS  Google Scholar 

  19. Jin L, Williamson A, Banerjee S, Philipp I, Rape M (2008) Mechanism of ubiquitin-chain formation by the human anaphase-­promoting complex. Cell 133(4):653–665

    PubMed  CAS  Google Scholar 

  20. Harper JW, Schulman BA (2006) Structural complexity in ubiquitin recognition. Cell 124(6):1133–1136

    PubMed  CAS  Google Scholar 

  21. Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8(7):700–710

    PubMed  CAS  Google Scholar 

  22. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24(19): 3353–3359

    PubMed  CAS  Google Scholar 

  23. Haglund K, Di Fiore PP, Dikic I (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28(11):598–603

    PubMed  CAS  Google Scholar 

  24. Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32(12):561–573

    PubMed  CAS  Google Scholar 

  25. Bennett EJ, Harper JW (2008) DNA damage: ubiquitin marks the spot. Nat Struct Mol Biol 15(1):20–22

    PubMed  CAS  Google Scholar 

  26. Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Lohr F, Wu CJ, Ashwell JD, Dotsch V, Dikic I, Beyaert R (2008) Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27(26):3739–3745

    PubMed  CAS  Google Scholar 

  27. Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H (2009) Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33(5):602–615

    PubMed  CAS  Google Scholar 

  28. Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84(2):277–287

    PubMed  CAS  Google Scholar 

  29. Sloper-Mould KE, Jemc JC, Pickart CM, Hicke L (2001) Distinct functional surface regions on ubiquitin. J Biol Chem 276(32): 30483–30489

    PubMed  CAS  Google Scholar 

  30. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH (2006) Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 13(3):264–271

    PubMed  CAS  Google Scholar 

  31. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR (2006) Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124(6):1183–1195

    PubMed  CAS  Google Scholar 

  32. Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD (2006) The ubiquitin binding domain ZnF UBP ­recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124(6): 1197–1208

    PubMed  CAS  Google Scholar 

  33. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481–488

    PubMed  CAS  Google Scholar 

  34. Pines J, Lindon C (2005) Proteolysis: anytime, any place, anywhere? Nat Cell Biol 7(8):731–735

    PubMed  CAS  Google Scholar 

  35. Rape M, Kirschner MW (2004) Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432(7017):588–595

    PubMed  CAS  Google Scholar 

  36. Simpson-Lavy KJ, Oren YS, Feine O, Sajman J, Listovsky T, Brandeis M (2010) Fifteen years of APC/cyclosome: a short and impressive biography. Biochem Soc Trans 38(Pt 1): 78–82

    PubMed  CAS  Google Scholar 

  37. Yu ZK, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95(19):11324–11329

    PubMed  CAS  Google Scholar 

  38. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278(28):25752–25757

    PubMed  CAS  Google Scholar 

  39. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4(6):799–812

    PubMed  CAS  Google Scholar 

  40. Margottin-Goguet F, Hsu JY, Loktev A, Hsieh HM, Reimann JD, Jackson PK (2003) Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4(6):813–826

    PubMed  CAS  Google Scholar 

  41. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428(6979):194–198

    PubMed  CAS  Google Scholar 

  42. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428(6979):190–193

    PubMed  CAS  Google Scholar 

  43. Cang Y, Zhang J, Nicholas SA, Bastien J, Li B, Zhou P, Goff SP (2006) Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127(5):929–940

    PubMed  CAS  Google Scholar 

  44. Zhong W, Feng H, Santiago FE, Kipreos ET (2003) CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423(6942): 885–889

    PubMed  CAS  Google Scholar 

  45. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25(5):1126–1136

    PubMed  CAS  Google Scholar 

  46. Zhang YW, Otterness DM, Chiang GG, Xie W, Liu YC, Mercurio F, Abraham RT (2005) Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell 19(5):607–618

    PubMed  CAS  Google Scholar 

  47. Leung-Pineda V, Huh J, Piwnica-Worms H (2009) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 69(6):2630–2637

    PubMed  CAS  Google Scholar 

  48. Munoz MA, Saunders DN, Henderson MJ, Clancy JL, Russell AJ, Lehrbach G, Musgrove EA, Watts CK, Sutherland RL (2007) The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle 6(24):3070–3077

    PubMed  CAS  Google Scholar 

  49. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145

    PubMed  CAS  Google Scholar 

  50. Volker C, Lupas AN (2002) Molecular evolution of proteasomes. Curr Top Microbiol Immunol 268:1–22

    PubMed  CAS  Google Scholar 

  51. Finley D (2009) Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    PubMed  CAS  Google Scholar 

  52. Schrader EK, Harstad KG, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5(11):815–822

    PubMed  CAS  Google Scholar 

  53. Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 7(3):627–637

    PubMed  CAS  Google Scholar 

  54. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471

    PubMed  CAS  Google Scholar 

  55. Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory ­complex PAN serves multiple functions in protein degradation. Mol Cell 11(1):69–78

    PubMed  CAS  Google Scholar 

  56. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067

    PubMed  CAS  Google Scholar 

  57. Kohler A, Bajorek M, Groll M, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2001) The substrate translocation channel of the proteasome. Biochimie 83(3–4): 325–332

    PubMed  CAS  Google Scholar 

  58. Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001) The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 7(6):1143–1152

    PubMed  CAS  Google Scholar 

  59. Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19

    PubMed  CAS  Google Scholar 

  60. Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G (2006) Proteasomes from structure to function: perspectives from Archaea. Curr Top Dev Biol 75:125–169

    PubMed  CAS  Google Scholar 

  61. Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, peptide production, and interactions with viral proteins. Curr Protein Pept Sci 5(3):153–161

    PubMed  CAS  Google Scholar 

  62. Murata S, Takahama Y, Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20(2):192–196

    PubMed  CAS  Google Scholar 

  63. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615–623

    PubMed  CAS  Google Scholar 

  64. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1(4):221–226

    PubMed  CAS  Google Scholar 

  65. Eckardt NA (2003) Characterization of the last subunit of the Arabidopsis COP9 signalosome. Plant Cell 15(3):580–581

    PubMed  Google Scholar 

  66. Harari-Steinberg O, Chamovitz DA (2004) The COP9 signalosome: mediating between kinase signaling and protein degradation. Curr Protein Pept Sci 5(3):185–189

    PubMed  CAS  Google Scholar 

  67. Schwechheimer C (2004) The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 1695(1–3):45–54

    PubMed  CAS  Google Scholar 

  68. Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19:261–286

    PubMed  CAS  Google Scholar 

  69. Kim T, Hofmann K, von Arnim AG, Chamovitz DA (2001) PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci 6(8):379–386

    PubMed  CAS  Google Scholar 

  70. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611–615

    PubMed  CAS  Google Scholar 

  71. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298(5593):608–611

    PubMed  CAS  Google Scholar 

  72. Enchev RI, Schreiber A, Beuron F, Morris EP (2010) Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 18(4):518–527

    PubMed  CAS  Google Scholar 

  73. Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127(7):1401–1413

    PubMed  CAS  Google Scholar 

  74. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269(10):7059–7061

    PubMed  CAS  Google Scholar 

  75. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16(11):6020–6028

    PubMed  Google Scholar 

  76. Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26S proteasome subunit Mcb1. J Biol Chem 273(4):1970–1981

    PubMed  CAS  Google Scholar 

  77. Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 6(11):1885–1895

    PubMed  CAS  Google Scholar 

  78. Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin–proteasome system. Cell 118(1):99–110

    PubMed  CAS  Google Scholar 

  79. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127(1):99–111

    PubMed  CAS  Google Scholar 

  80. Seong KM, Baek JH, Ahn BY, Yu MH, Kim J (2007) Rpn10p is a receptor for ubiquitinated Gcn4p in proteasomal proteolysis. Mol Cells 24(2):194–199

    PubMed  CAS  Google Scholar 

  81. Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279(26): 26817–26822

    PubMed  CAS  Google Scholar 

  82. Hamazaki J, Sasaki K, Kawahara H, Hisanaga S, Tanaka K, Murata S (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 27(19):6629–6638

    PubMed  CAS  Google Scholar 

  83. Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 182(4): 663–673

    PubMed  CAS  Google Scholar 

  84. Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32(3):415–425

    PubMed  CAS  Google Scholar 

  85. Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL (2009) S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 28(13):1867–1877

    PubMed  CAS  Google Scholar 

  86. Zhang D, Chen T, Ziv I, Rosenzweig R, Matiuhin Y, Bronner V, Glickman MH, Fushman D (2009) Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol Cell 36(6):1018–1033

    PubMed  CAS  Google Scholar 

  87. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77(4):1783–1786

    PubMed  CAS  Google Scholar 

  88. Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D (2002) Multiple associated proteins regulate proteasome structure and function. Mol Cell 10(3):495–507

    PubMed  CAS  Google Scholar 

  89. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403–407

    PubMed  CAS  Google Scholar 

  90. Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y (2009) Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun 390(3):855–860

    PubMed  CAS  Google Scholar 

  91. Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8(9):994–1002

    PubMed  CAS  Google Scholar 

  92. Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, Wilson SM, King RW, Finley D (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467(7312):179–184

    PubMed  CAS  Google Scholar 

  93. Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19(2):199–205

    PubMed  CAS  Google Scholar 

  94. Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, Kirkpatrick DS, Thomson TM, Finley D, Gygi SP, Crosas B (2010) Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 38(5):733–745

    PubMed  CAS  Google Scholar 

  95. Shih HM, Chang CC, Kuo HY, Lin DY (2007) Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 35(Pt 6):1397–1400

    PubMed  CAS  Google Scholar 

  96. Stamenova SD, Dunn R, Adler AS, Hicke L (2004) The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Sla1-Rvs167. J Biol Chem 279(16):16017–16025

    PubMed  CAS  Google Scholar 

  97. Stawiecka-Mirota M, Pokrzywa W, Morvan J, Zoladek T, Haguenauer-Tsapis R, Urban-Grimal D, Morsomme P (2007) Targeting of Sna3p to the endosomal pathway depends on its interaction with Rsp5p and multivesicular body sorting on its ubiquitylation. Traffic 8(9):1280–1296

    PubMed  CAS  Google Scholar 

  98. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135(4):714–725

    PubMed  CAS  Google Scholar 

  99. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102(5):577–586

    PubMed  CAS  Google Scholar 

  100. Huibregtse JM, Yang JC, Beaudenon SL (1997) The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA 94(8):3656–3661

    PubMed  CAS  Google Scholar 

  101. Somesh BP, Sigurdsson S, Saeki H, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2007) Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell 129(1):57–68

    PubMed  CAS  Google Scholar 

  102. Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 3:116

    PubMed  Google Scholar 

  103. Kee Y, Lyon N, Huibregtse JM (2005) The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J 24(13):2414–2424

    PubMed  CAS  Google Scholar 

  104. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5(5):417–421

    PubMed  CAS  Google Scholar 

  105. Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28(4):359–371

    PubMed  CAS  Google Scholar 

  106. Kim HC, Huibregtse JM (2009) Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 29(12):3307–3318

    PubMed  CAS  Google Scholar 

  107. Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H, Dikic I (2006) Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8(2):163–169

    PubMed  CAS  Google Scholar 

  108. Plant PJ, Lafont F, Lecat S, Verkade P, Simons K, Rotin D (2000) Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149(7):1473–1484

    PubMed  CAS  Google Scholar 

  109. Dunn R, Klos DA, Adler AS, Hicke L (2004) The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J Cell Biol 165(1):135–144

    PubMed  CAS  Google Scholar 

  110. Morrione A, Plant P, Valentinis B, Staub O, Kumar S, Rotin D, Baserga R (1999) mGrb10 interacts with Nedd4. J Biol Chem 274(34):24094–24099

    PubMed  CAS  Google Scholar 

  111. Plant PJ, Yeger H, Staub O, Howard P, Rotin D (1997) The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272(51):32329–32336

    PubMed  CAS  Google Scholar 

  112. Seo SR, Lallemand F, Ferrand N, Pessah M, L’Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J 23(19):3780–3792

    PubMed  CAS  Google Scholar 

  113. Lu PJ, Zhou XZ, Shen M, Lu KP (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283(5406):1325–1328

    PubMed  CAS  Google Scholar 

  114. Dupre S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695(1–3):89–111

    PubMed  CAS  Google Scholar 

  115. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23(11):1972–1984

    PubMed  CAS  Google Scholar 

  116. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernat Crosas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Isasa, M., Zuin, A., Crosas, B. (2012). Integration of Multiple Ubiquitin Signals in Proteasome Regulation. In: Larson, R. (eds) Bioinformatics and Drug Discovery. Methods in Molecular Biology, vol 910. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-965-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-965-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-964-8

  • Online ISBN: 978-1-61779-965-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics