Linking Variants from Genome-Wide Association Analysis to Function via Transcriptional Network Analysis

  • Benjamin J. KellerEmail author
  • Sebastian Martini
  • Viji Nair
Part of the Methods in Molecular Biology book series (MIMB, volume 910)


We outline a strategy to use tissue-specific expression along with promoter module analysis to determine the putative functional context of candidate genes implicated in genome-wide association studies. First, genes are selected from candidate SNPs, followed by construction of a gene co-regulation network to expand the regulatory context of the candidate genes, functional analysis to determine putative functional roles, and subsequent analysis of regulatory elements. We describe these sub-strategies and variations, along with guidelines for alternatives in the overall analysis.

Key words

Genome-wide association study GWAS Gene expression Candidate gene Co-regulation network Functional analysis Gene regulation Promoter module Transcriptional analysis 


  1. 1.
    Keller B et al (2010) Linking variants from genome-wide association analysis to function via transcriptional network analysis. Semin Nephrol 30(2):177–184. doi: 10.1016/j.semnephrol.2010.01.008 CrossRefGoogle Scholar
  2. 2.
    Cookson W et al (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184–194. doi: 10.1038/nrg2537 CrossRefGoogle Scholar
  3. 3.
    Cohen CD et al (2002) Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int 61(1):133–140. doi: 10.1046/j.1523-1755.2002.00113.x CrossRefGoogle Scholar
  4. 4.
    Heinzen EL et al (2008) Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 6(12):e1. doi: 10.1371/journal.pbio.1000001 CrossRefGoogle Scholar
  5. 5.
    Veyrieras J-B et al (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4(10):e1000214. doi: 10.1371/journal.pgen.1000214 CrossRefGoogle Scholar
  6. 6.
    Karolchik D et al (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32(Database issue):D493–D496. doi: 10.1093/nar/gkh103 CrossRefGoogle Scholar
  7. 7.
    Dai M et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175. doi: 10.1093/nar/gni179 CrossRefGoogle Scholar
  8. 8.
    Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17Google Scholar
  9. 9.
    Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi: 10.1101/gr.1239303 CrossRefGoogle Scholar
  10. 10.
    Fessele S et al (2002) Regulatory context is a crucial part of gene function. Trends Genet 18(2):60–63CrossRefGoogle Scholar
  11. 11.
    Sliwerska E et al (2007) SNPs on chips: the hidden genetic code in expression arrays. Biol Psychiatry 61(1):13–16. doi: 10.1016/j.biopsych.2006.01.023 CrossRefGoogle Scholar
  12. 12.
    Ballester B et al (2010) Consistent annotation of gene expression arrays. BMC Genomics 11(1):294. doi: 10.1186/1471-2164-11-294 CrossRefGoogle Scholar
  13. 13.
    Barbosa-Morais NL et al (2010) A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res 38(3):e17. doi: 10.1093/nar/gkp942 CrossRefGoogle Scholar
  14. 14.
    Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi: 10.1038/75556 CrossRefGoogle Scholar
  15. 15.
    Huang DW et al (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar
  16. 16.
    Dennis G et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3CrossRefGoogle Scholar
  17. 17.
    Sartor MA et al (2010) ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics 26(4):456–463. doi: 10.1093/bioinformatics/btp683 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Benjamin J. Keller
    • 1
    Email author
  • Sebastian Martini
    • 2
  • Viji Nair
    • 2
  1. 1.Department of Computer ScienceEastern Michigan UniversityYpsilantiUSA
  2. 2.Nephrology Division, Department of Internal MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations