Skip to main content

A Strategy for Identifying Noncoding RNAs Using Whole-Genome Tiling Arrays

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 905))

Abstract

Whole-genome tiling arrays are powerful tools for detecting and characterizing novel RNA transcripts. Here, we describe a complete method combining elements of molecular and computational biology to identify small noncoding RNA (sRNA) transcripts. We focus on the key features of this approach, which include size-fractionation of input RNA, direct detection of array hybridization with antibodies that recognize RNA:DNA hybrids, and correlation-based computational methods for automated sRNA identification and boundary determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory sRNA. Curr Opin Microbiol 12:536–546

    Article  PubMed  CAS  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed  CAS  Google Scholar 

  3. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    Article  PubMed  CAS  Google Scholar 

  4. Hu Z, Zhang A, Storz G, Gottesman S, Leppla SH (2006) An antibody-based microarray assay for small RNA detection. Nucleic Acids Res 34:e52

    Article  PubMed  Google Scholar 

  5. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  PubMed  CAS  Google Scholar 

  6. Landt SG, Abeliuk E, McGrath PT, Lesley JA, McAdams HH, Shapiro L (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614

    Article  PubMed  CAS  Google Scholar 

  7. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124

    Article  PubMed  CAS  Google Scholar 

  8. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  PubMed  CAS  Google Scholar 

  9. Lukashin A, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  PubMed  CAS  Google Scholar 

  10. Kingsford K, Ayanbule K, Salzberg SL (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22

    Article  PubMed  Google Scholar 

  11. McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH et al (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25:584–592

    Article  PubMed  CAS  Google Scholar 

  12. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  13. Ideker T, Thorsson V, Siegel AF, Hood LE (2001) Testing for differentially expressed genes by maximum-likelihood analysis of microarray data. J Comput Biol 7:805–818

    Article  Google Scholar 

  14. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36

    Article  PubMed  CAS  Google Scholar 

  15. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants GM51426 and GM32506, by DOE grants DE-FG03ER63219-A001 and DE-FG02ER63219, and also supported by the Stanford NIH Genome Training Grant (SGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Landt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Landt, S.G., Abeliuk, E. (2012). A Strategy for Identifying Noncoding RNAs Using Whole-Genome Tiling Arrays. In: Keiler, K. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 905. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-949-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-949-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-948-8

  • Online ISBN: 978-1-61779-949-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics