Skip to main content

Bioinformatic Discovery of Bacterial Regulatory RNAs Using SIPHT

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 905))

Abstract

Diverse bacteria encode RNAs that are not translated into proteins but are instead involved in regulating a wide variety of cellular functions. Computational approaches have proven successful in identifying numerous regulatory RNAs in myriad bacterial species but the difficultly of implementing most of these approaches has limited their accessibility to many researchers. Moreover, few of these approaches provide annotations of predicted loci to guide downstream experimental validation and characterization. Here I describe the implementation of SIPHT, a web-accessible program that enables screens for putative loci encoding regulatory RNAs to be conducted in any of nearly 2,000 sequenced bacterial replicons. SIPHT identifies candidate loci by searching for regions of intergenic sequence conservation upstream of predicted intrinsic transcription terminators. Each locus is then annotated for numerous features that provide clues about its potential function and/or enable the most reliable candidates to be identified.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10:257–261

    Article  PubMed  CAS  Google Scholar 

  2. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  PubMed  CAS  Google Scholar 

  3. Weissenmayer BA et al (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6:e17570

    Article  PubMed  CAS  Google Scholar 

  4. Liu JM et al (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46

    Article  PubMed  Google Scholar 

  5. Livny J, Waldor MK (2010) Mining regulatory 5′UTRs from cDNA deep sequencing datasets. Nucleic Acids Res 38:1504–1514

    Article  PubMed  CAS  Google Scholar 

  6. Irnov I et al (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 38:6637–6651

    Article  PubMed  CAS  Google Scholar 

  7. Sharma CM et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  PubMed  CAS  Google Scholar 

  8. Mraheil MA et al (2011) The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39:4235–4248

    Article  PubMed  CAS  Google Scholar 

  9. Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101

    Article  PubMed  CAS  Google Scholar 

  10. Lu X et al (2011) Assessing computational tools for the discovery of small RNA genes in bacteria. RNA 17:1635–1647

    Article  PubMed  CAS  Google Scholar 

  11. Livny J et al (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 3:e3197

    Article  PubMed  Google Scholar 

  12. Valverde C et al (2008) Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 9:416

    Article  PubMed  Google Scholar 

  13. Faucher SP et al (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA 107:7533–7538

    Article  PubMed  CAS  Google Scholar 

  14. Dichiara JM et al (2010) Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res 38:4067–4078

    Article  PubMed  CAS  Google Scholar 

  15. Postic G et al (2010) Identification of small RNAs in Francisella tularensis. BMC Genomics 11:625

    Article  PubMed  Google Scholar 

  16. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  17. Macke TJ et al (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735

    Article  PubMed  CAS  Google Scholar 

  18. Kingsford CL et al (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22

    Article  PubMed  Google Scholar 

  19. Wassarman K et al (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651

    Article  PubMed  CAS  Google Scholar 

  20. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  PubMed  Google Scholar 

  21. Gardner PP et al (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145

    Article  PubMed  Google Scholar 

  22. Hulton CS et al (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834

    Article  PubMed  CAS  Google Scholar 

  23. Rivas E et al (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11:1369–1373

    Article  PubMed  CAS  Google Scholar 

  24. van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Livny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Livny, J. (2012). Bioinformatic Discovery of Bacterial Regulatory RNAs Using SIPHT. In: Keiler, K. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 905. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-949-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-949-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-948-8

  • Online ISBN: 978-1-61779-949-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics