Skip to main content

Production of Human or Humanized Antibodies in Mice

  • Protocol
  • First Online:
Antibody Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

Mice are widely available laboratory animals that can easily be used for the production of antibodies against a broad range of antigens, using well-defined immunization protocols. Such an approach allows optimal in vivo affinity maturation of the humoral response. In addition, high-affinity antibodies arising in this context can readily be further characterized and produced as monoclonals after immortalizing and selecting specific antibody-producing cells through hybridoma derivation. Using such conventional strategies combined with mice that are either genetically engineered to carry humanized immunoglobulin (Ig) genes or engrafted with a human immune system, it is thus easy to obtain and immortalize clones that produce either fully human Ig or antibodies associating variable (V) domains with selected antigen specificities to customized human-like constant regions, with defined effector functions. In some instances, where there is a need for in vivo functional assays of a single antibody with a known specificity, it might be of interest to transiently express that gene in mice by in vivo gene transfer. This approach allows a rapid functional assay. More commonly, mice are used to obtain a diversified repertoire of antibody specificities after immunization by producing antibody molecules in the mouse B cell lineage from mouse strains with transgene Ig genes which are of human, humanized, or chimeric origin. After in vivo maturation of the immune response, this will lead to the secretion of antibodies with optimized antigen binding sites, associated to the desired human constant domains. This chapter focuses on two simple methods: (1) to obtain such humanized Ig mice and (2) to transiently express a human Ig gene in mice using hydrodynamics-based transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  CAS  Google Scholar 

  2. Green LL, Hardy MC, Maynard-Currie CE et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21

    Article  PubMed  CAS  Google Scholar 

  3. Green LL, Jakobovits A (1998) Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med 188: 483–495

    Article  PubMed  CAS  Google Scholar 

  4. Kuroiwa Y, Tomizuka K, Shinohara T et al (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18: 1086–1090

    Article  PubMed  CAS  Google Scholar 

  5. Le Provost F, Lillico S, Passet B et al (2010) Zinc finger nuclease technology heralds a new era in mammalian transgenesis. Trends Biotechnol 28:134–141

    Article  PubMed  Google Scholar 

  6. Mendez MJ, Green LL, Corvalan JR et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  PubMed  CAS  Google Scholar 

  7. Popov AV, Zou X, Xian J et al (1999) A human immunoglobulin lambda locus is similarly well expressed in mice and humans. J Exp Med 189: 1611–1620

    Article  PubMed  CAS  Google Scholar 

  8. Tomizuka K, Shinohara T, Yoshida H et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  PubMed  CAS  Google Scholar 

  9. Zou YR, Muller W, Gu H et al (1994) Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol 4:1099–1103

    Article  PubMed  CAS  Google Scholar 

  10. Ishida I, Tomizuka K, Yoshida H et al (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102

    Article  PubMed  CAS  Google Scholar 

  11. Lonberg N, Taylor LD, Harding FA et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    Article  PubMed  CAS  Google Scholar 

  12. Jakobovits A, Amado RG, Yang X et al (2007) From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25:1134–1143

    Article  PubMed  CAS  Google Scholar 

  13. Duchez S, Amin R, Cogne N et al (2010) Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci U S A 107:3064–3069

    Article  PubMed  Google Scholar 

  14. Kiefer JC (2011) Primer and interviews: advances in targeted gene modification. Dev Dyn 240:2688–2696

    Article  CAS  Google Scholar 

  15. Menoret S, Iscache AL, Tesson L et al (2010) Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol 40: 2932–2941

    Article  PubMed  CAS  Google Scholar 

  16. Flisikowska T, Thorey IS, Offner S et al (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045

    Article  PubMed  CAS  Google Scholar 

  17. Li H, Haurigot V, Doyon Y et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Article  PubMed  CAS  Google Scholar 

  18. Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  PubMed  CAS  Google Scholar 

  19. Song YK, Liu F, Zhang G et al (2002) Hydrodynamics-based transfection: simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA. Methods Enzymol 346:92–105

    Article  PubMed  CAS  Google Scholar 

  20. Pinaud E, Khamlichi AA, Le Morvan C et al (2001) Localization of the 3′ IgH locus elements that effect long-distance regulation of class switch recombination. Immunity 15:187–199

    Article  PubMed  CAS  Google Scholar 

  21. Nagy A, Gertsenstein M, Vintersten K et al (2004) In: Cuddihy J (ed) Manipulating the mouse embryo, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  22. Zuckier LS, Chang CJ, Scharff MD et al (1998) Chimeric human-mouse IgG antibodies with shuffled constant region exons demonstrate that multiple domains contribute to in vivo half-life. Cancer Res 58:3905–3908

    PubMed  CAS  Google Scholar 

  23. Wilber A, Linehan JL, Tian X et al (2007) Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells 25:2919–2927

    Article  PubMed  CAS  Google Scholar 

  24. Mortensen RM, Zubiaur M, Neer EJ et al (1991) Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles. Proc Natl Acad Sci U S A 88:7036–7040

    Article  PubMed  CAS  Google Scholar 

  25. Taniguchi M, Sanbo M, Watanabe S et al (1998) Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance gene, pac: a transient gene-integration marker for ES cells. Nucleic Acids Res 26:679–680

    Article  PubMed  CAS  Google Scholar 

  26. McCarrick JW 3rd, Parnes JR, Seong RH et al (1993) Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells. Transgenic Res 2:183–190

    Article  PubMed  CAS  Google Scholar 

  27. Yagi T, Nada S, Watanabe N et al (1993) A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal Biochem 214:77–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cogné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Laffleur, B., Pascal, V., Sirac, C., Cogné, M. (2012). Production of Human or Humanized Antibodies in Mice. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics