Class-Specific Effector Functions of Therapeutic Antibodies

  • Virginie Pascal
  • Brice Laffleur
  • Michel CognéEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 901)


Physiology usually combines polyclonal antibodies of multiple classes in a single humoral response. Beyond their common ability to bind antigens, these various classes of human immunoglobulins carry specific functions which can each serve specific goals. In many cases, the function of a monoclonal therapeutic antibody may thus be modulated according to the class of its constant domains. Depending on the immunoglobulin class, different functional assays will be used in order to evaluate the functional activity of a monoclonal antibody.

Key words

Antibody-dependent cell cytotoxicity Antigen neutralization Complement Complement-dependent cytotoxicity Human antibodies Immunoglobulin 


  1. 1.
    Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357PubMedCrossRefGoogle Scholar
  2. 2.
    Law M, Hangartner L (2008) Antibodies against viruses: passive and active immunization. Curr Opin Immunol 20:486–492PubMedCrossRefGoogle Scholar
  3. 3.
    Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16:1701–1708PubMedCrossRefGoogle Scholar
  4. 4.
    Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol 18:739–766PubMedCrossRefGoogle Scholar
  5. 5.
    Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758PubMedCrossRefGoogle Scholar
  6. 6.
    Azuma Y, Ishikawa Y, Kawai S et al (2007) Recombinant human hexamer-dominant IgM monoclonal antibody to ganglioside GM3 for treatment of melanoma. Clin Cancer Res 13:2745–2750PubMedCrossRefGoogle Scholar
  7. 7.
    Dechant M, Beyer T, Schneider-Merck T et al (2007) Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol 179:2936–2943PubMedGoogle Scholar
  8. 8.
    Bracher M, Gould HJ, Sutton BJ et al (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160–171PubMedCrossRefGoogle Scholar
  9. 9.
    Maley DT, Simon P (1990) Cytotoxicity assays using cryopreserved target cells pre-labeled with the fluorescent marker europium. J Immunol Methods 134:61–70PubMedCrossRefGoogle Scholar
  10. 10.
    Mostov KE (1994) Transepithelial transport of immunoglobulins. Annu Rev Immunol 12: 63–84PubMedCrossRefGoogle Scholar
  11. 11.
    Bruggemann M, Williams GT, Bindon CI et al (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166: 1351–1361PubMedCrossRefGoogle Scholar
  12. 12.
    Mestecky J, Russell MW, Elson CO (1999) Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 44:2–5PubMedCrossRefGoogle Scholar
  13. 13.
    Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2:773–786PubMedCrossRefGoogle Scholar
  14. 14.
    Eliasson M, Olsson A, Palmcrantz E et al (1988) Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G. J Biol Chem 263: 4323–4327PubMedGoogle Scholar
  15. 15.
    Sandin C, Linse S, Areschoug T et al (2002) Isolation and detection of human IgA using a streptococcal IgA-binding peptide. J Immunol 169:1357–1364PubMedGoogle Scholar
  16. 16.
    Nilson BH, Solomon A, Bjorck L et al (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267:2234–2239PubMedGoogle Scholar
  17. 17.
    Aalberse RC, van der Gaag R, van Leeuwen J (1983) Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol 130:722–726PubMedGoogle Scholar
  18. 18.
    Venaille TJ, Misso NL, Phillips MJ et al (1994) Effects of different density gradient separation techniques on neutrophil function. Scand J Clin Lab Invest 54:385–391PubMedCrossRefGoogle Scholar
  19. 19.
    Bender AT, Ostenson CL, Giordano D et al (2004) Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal 16:365–374PubMedCrossRefGoogle Scholar
  20. 20.
    Sunada H, Magun BE, Mendelsohn J et al (1986) Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA 83:3825–3829PubMedCrossRefGoogle Scholar
  21. 21.
    Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311PubMedCrossRefGoogle Scholar
  22. 22.
    Lohse S, Derer S, Beyer T et al (2011) Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186: 3770–3778PubMedCrossRefGoogle Scholar
  23. 23.
    Falschlehner C, Ganten TM, Koschny R et al (2009) TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. Adv Exp Med Biol 647:195–206PubMedCrossRefGoogle Scholar
  24. 24.
    Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652PubMedGoogle Scholar
  25. 25.
    Guo Y, Chen C, Zheng Y et al (2005) A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 280:41940–41952PubMedCrossRefGoogle Scholar
  26. 26.
    Rose AL, Smith BE, Maloney DG (2002) Glucocorticoids and rituximab in vitro: synergistic direct antiproliferative and apoptotic effects. Blood 100:1765–1773PubMedGoogle Scholar
  27. 27.
    Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother 48:673–683PubMedCrossRefGoogle Scholar
  28. 28.
    Ghetie MA, Bright H, Vitetta ES (2001) Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. Blood 97:1392–1398PubMedCrossRefGoogle Scholar
  29. 29.
    Lazar GA, Dang W, Karki S et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010PubMedCrossRefGoogle Scholar
  30. 30.
    Zhao X, Singh S, Pardoux C et al (2009) Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica 95:71–78PubMedCrossRefGoogle Scholar
  31. 31.
    Sepp A, Binns RM, Lechler RI (1996) Improved protocol for colorimetric detection of complement-mediated cytotoxicity based on the measurement of cytoplasmic lactate dehydrogenase activity. J Immunol Methods 196: 175–180PubMedCrossRefGoogle Scholar
  32. 32.
    Blanquet-Grossard F, Thielens NM, Vendrely C et al (2005) Complement protein C1q recognizes a conformationally modified form of the prion protein. Biochemistry 44:4349–4356PubMedCrossRefGoogle Scholar
  33. 33.
    Idusogie EE, Wong PY, Presta LG et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166: 2571–2575PubMedGoogle Scholar
  34. 34.
    Daha MR, Gorter A, Rits M et al (1989) Interaction of immunoglobulin A with complement and phagocytic cells. Prog Clin Biol Res 297:247–260, discussion 260–261PubMedGoogle Scholar
  35. 35.
    Chuang PD, Morrison SL (1997) Elimination of N-linked glycosylation sites from the human IgA1 constant region: effects on structure and function. J Immunol 158:724–732PubMedGoogle Scholar
  36. 36.
    Roos A, Bouwman LH, van Gijlswijk-Janssen DJ et al (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868PubMedGoogle Scholar
  37. 37.
    Hiemstra PS, Gorter A, Stuurman ME et al (1987) Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol 17:321–326PubMedCrossRefGoogle Scholar
  38. 38.
    Pfaffenbach G, Lamm ME, Gigli I (1982) Activation of the guinea pig alternative complement pathway by mouse IgA immune complexes. J Exp Med 155:231–247PubMedCrossRefGoogle Scholar
  39. 39.
    Pawluczkowycz AW, Beurskens FJ, Beum PV et al (2009) Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol 183: 749–758PubMedCrossRefGoogle Scholar
  40. 40.
    Beum PV, Lindorfer MA, Hall BE et al (2006) Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J Immunol Methods 317:90–99PubMedCrossRefGoogle Scholar
  41. 41.
    Karagiannis SN, Wang Q, East N et al (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Fei D, Vanderlaan M et al (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7:335–345PubMedCrossRefGoogle Scholar
  43. 43.
    Tai YT, Li X, Tong X et al (2005) Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 65:5898–5906PubMedCrossRefGoogle Scholar
  44. 44.
    Gomez-Roman VR, Florese RH, Patterson LJ et al (2006) A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J Immunol Methods 308:53–67PubMedCrossRefGoogle Scholar
  45. 45.
    Kolber MA, Quinones RR, Gress RE et al (1988) Measurement of cytotoxicity by target cell release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). J Immunol Methods 108:255–264PubMedCrossRefGoogle Scholar
  46. 46.
    Whiteside TL, Bryant J, Day R et al (1990) Natural killer cytotoxicity in the diagnosis of immune dysfunction: criteria for a reproducible assay. J Clin Lab Anal 4:102–114PubMedCrossRefGoogle Scholar
  47. 47.
    Blomberg K, Granberg C, Hemmila I et al (1986) Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 86:225–229PubMedCrossRefGoogle Scholar
  48. 48.
    Blomberg K, Granberg C, Hemmila I et al (1986) Europium-labelled target cells in an assay of natural killer cell activity. II. A novel non-radioactive method based on time-resolved fluorescence. Significance and specificity of the method. J Immunol Methods 92:117–123PubMedCrossRefGoogle Scholar
  49. 49.
    Hemmila I, Dakubu S, Mukkala VM et al (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343PubMedCrossRefGoogle Scholar
  50. 50.
    von Zons P, Crowley-Nowick P, Friberg D et al (1997) Comparison of europium and chromium release assays: cytotoxicity in healthy individuals and patients with cervical carcinoma. Clin Diagn Lab Immunol 4:202–207Google Scholar
  51. 51.
    Wallace PK, Kaufman PA, Lewis LD et al (2001) Bispecific antibody-targeted phagocytosis of HER-2/neu expressing tumor cells by myeloid cells activated in vivo. J Immunol Methods 248:167–182PubMedCrossRefGoogle Scholar
  52. 52.
    Guyre CA, Gomes D, Smith KA et al (2008) Development of an in vivo antibody-mediated killing (IVAK) model, a flow cytometric method to rapidly evaluate therapeutic antibodies. J Immunol Methods 333:51–60PubMedCrossRefGoogle Scholar
  53. 53.
    Di Gaetano N, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMedGoogle Scholar
  54. 54.
    Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand 77:758–760PubMedCrossRefGoogle Scholar
  55. 55.
    Reddy S, Piccione D, Takita H et al (1987) Human lung tumor growth established in the lung and subcutaneous tissue of mice with severe combined immunodeficiency. Cancer Res 47:2456–2460PubMedGoogle Scholar
  56. 56.
    Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867PubMedCrossRefGoogle Scholar
  57. 57.
    Mombaerts P, Iacomini J, Johnson RS et al (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877PubMedCrossRefGoogle Scholar
  58. 58.
    Prochazka M, Gaskins HR, Shultz LD et al (1992) The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA 89:3290–3294PubMedCrossRefGoogle Scholar
  59. 59.
    Brehm MA, Bortell R, Diiorio P et al (2010) Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes 59:2265–2270PubMedCrossRefGoogle Scholar
  60. 60.
    Colucci F, Soudais C, Rosmaraki E et al (1999) Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162:2761–2765PubMedGoogle Scholar
  61. 61.
    Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182PubMedCrossRefGoogle Scholar
  62. 62.
    Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174: 6477–6489PubMedGoogle Scholar
  63. 63.
    Pearson T, Shultz LD, Miller D et al (2008) Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 154:270–284PubMedCrossRefGoogle Scholar
  64. 64.
    Suemizu H, Monnai M, Ohnishi Y et al (2007) Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/gammacnull (NOG) mice. Int J Oncol 31:741–751PubMedGoogle Scholar
  65. 65.
    Le Devedec SE, van Roosmalen W, Maria N et al (2009) An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2(−/−) gammac (−/−) mouse. Clin Exp Metastasis 26: 673–684PubMedCrossRefGoogle Scholar
  66. 66.
    Bertilaccio MT, Scielzo C, Simonetti G et al (2010) A novel Rag2-/-gammac-/–xenograft model of human CLL. Blood 115:1605–1609PubMedCrossRefGoogle Scholar
  67. 67.
    Nakanishi T, Chumsri S, Khakpour N et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102:815–826PubMedCrossRefGoogle Scholar
  68. 68.
    Nijmeijer BA, van Schie ML, Halkes CJ et al (2010) A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood 116:5930–5940PubMedCrossRefGoogle Scholar
  69. 69.
    Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693PubMedCrossRefGoogle Scholar
  70. 70.
    McLarty K, Fasih A, Scollard DA et al (2009) 18F-FDG small-animal PET/CT differentiates trastuzumab-responsive from unresponsive human breast cancer xenografts in athymic mice. J Nucl Med 50:1848–1856PubMedCrossRefGoogle Scholar
  71. 71.
    Palazon A, Teijeira A, Martinez-Forero I et al (2011) Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res 71: 801–811PubMedCrossRefGoogle Scholar
  72. 72.
    Bergman I, Basse PH, Barmada MA et al (2000) Comparison of in vitro antibody-targeted cytotoxicity using mouse, rat and human effectors. Cancer Immunol Immunother 49:259–266PubMedCrossRefGoogle Scholar
  73. 73.
    Niwa R, Shoji-Hosaka E, Sakurada M et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133PubMedCrossRefGoogle Scholar
  74. 74.
    Stavenhagen JB, Gorlatov S, Tuaillon N et al (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67:8882–8890PubMedCrossRefGoogle Scholar
  75. 75.
    Nigro EA, Brini AT, Soprana E et al (2009) Antitumor IgE adjuvanticity: key role of Fc epsilon RI. J Immunol 183:4530–4536PubMedCrossRefGoogle Scholar
  76. 76.
    Zalevsky J, Chamberlain AK, Horton HM et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28:157–159PubMedCrossRefGoogle Scholar
  77. 77.
    Pathan NI, Chu P, Hariharan K et al (2008) Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood 111:1594–1602PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Virginie Pascal
    • 1
  • Brice Laffleur
    • 1
  • Michel Cogné
    • 1
    Email author
  1. 1.CNRS UMR6101, Contrôle des Réponses Immunes B et LymphoproliférationsUniversité de LimogesLimogesFrance

Personalised recommendations