Skip to main content

Class-Specific Effector Functions of Therapeutic Antibodies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

Physiology usually combines polyclonal antibodies of multiple classes in a single humoral response. Beyond their common ability to bind antigens, these various classes of human immunoglobulins carry specific functions which can each serve specific goals. In many cases, the function of a monoclonal therapeutic antibody may thus be modulated according to the class of its constant domains. Depending on the immunoglobulin class, different functional assays will be used in order to evaluate the functional activity of a monoclonal antibody.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  PubMed  CAS  Google Scholar 

  2. Law M, Hangartner L (2008) Antibodies against viruses: passive and active immunization. Curr Opin Immunol 20:486–492

    Article  PubMed  CAS  Google Scholar 

  3. Wiezorek J, Holland P, Graves J (2010) Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res 16:1701–1708

    Article  PubMed  CAS  Google Scholar 

  4. Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol 18:739–766

    Article  PubMed  CAS  Google Scholar 

  5. Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  PubMed  CAS  Google Scholar 

  6. Azuma Y, Ishikawa Y, Kawai S et al (2007) Recombinant human hexamer-dominant IgM monoclonal antibody to ganglioside GM3 for treatment of melanoma. Clin Cancer Res 13:2745–2750

    Article  PubMed  CAS  Google Scholar 

  7. Dechant M, Beyer T, Schneider-Merck T et al (2007) Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol 179:2936–2943

    PubMed  CAS  Google Scholar 

  8. Bracher M, Gould HJ, Sutton BJ et al (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160–171

    Article  PubMed  CAS  Google Scholar 

  9. Maley DT, Simon P (1990) Cytotoxicity assays using cryopreserved target cells pre-labeled with the fluorescent marker europium. J Immunol Methods 134:61–70

    Article  PubMed  CAS  Google Scholar 

  10. Mostov KE (1994) Transepithelial transport of immunoglobulins. Annu Rev Immunol 12: 63–84

    Article  PubMed  CAS  Google Scholar 

  11. Bruggemann M, Williams GT, Bindon CI et al (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166: 1351–1361

    Article  PubMed  CAS  Google Scholar 

  12. Mestecky J, Russell MW, Elson CO (1999) Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 44:2–5

    Article  PubMed  CAS  Google Scholar 

  13. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2:773–786

    Article  PubMed  CAS  Google Scholar 

  14. Eliasson M, Olsson A, Palmcrantz E et al (1988) Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G. J Biol Chem 263: 4323–4327

    PubMed  CAS  Google Scholar 

  15. Sandin C, Linse S, Areschoug T et al (2002) Isolation and detection of human IgA using a streptococcal IgA-binding peptide. J Immunol 169:1357–1364

    PubMed  CAS  Google Scholar 

  16. Nilson BH, Solomon A, Bjorck L et al (1992) Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem 267:2234–2239

    PubMed  CAS  Google Scholar 

  17. Aalberse RC, van der Gaag R, van Leeuwen J (1983) Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol 130:722–726

    PubMed  CAS  Google Scholar 

  18. Venaille TJ, Misso NL, Phillips MJ et al (1994) Effects of different density gradient separation techniques on neutrophil function. Scand J Clin Lab Invest 54:385–391

    Article  PubMed  CAS  Google Scholar 

  19. Bender AT, Ostenson CL, Giordano D et al (2004) Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal 16:365–374

    Article  PubMed  CAS  Google Scholar 

  20. Sunada H, Magun BE, Mendelsohn J et al (1986) Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci USA 83:3825–3829

    Article  PubMed  CAS  Google Scholar 

  21. Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311

    Article  PubMed  CAS  Google Scholar 

  22. Lohse S, Derer S, Beyer T et al (2011) Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186: 3770–3778

    Article  PubMed  CAS  Google Scholar 

  23. Falschlehner C, Ganten TM, Koschny R et al (2009) TRAIL and other TRAIL receptor agonists as novel cancer therapeutics. Adv Exp Med Biol 647:195–206

    Article  PubMed  CAS  Google Scholar 

  24. Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652

    PubMed  CAS  Google Scholar 

  25. Guo Y, Chen C, Zheng Y et al (2005) A novel anti-human DR5 monoclonal antibody with tumoricidal activity induces caspase-dependent and caspase-independent cell death. J Biol Chem 280:41940–41952

    Article  PubMed  CAS  Google Scholar 

  26. Rose AL, Smith BE, Maloney DG (2002) Glucocorticoids and rituximab in vitro: synergistic direct antiproliferative and apoptotic effects. Blood 100:1765–1773

    PubMed  CAS  Google Scholar 

  27. Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother 48:673–683

    Article  PubMed  CAS  Google Scholar 

  28. Ghetie MA, Bright H, Vitetta ES (2001) Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. Blood 97:1392–1398

    Article  PubMed  CAS  Google Scholar 

  29. Lazar GA, Dang W, Karki S et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010

    Article  PubMed  CAS  Google Scholar 

  30. Zhao X, Singh S, Pardoux C et al (2009) Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica 95:71–78

    Article  PubMed  Google Scholar 

  31. Sepp A, Binns RM, Lechler RI (1996) Improved protocol for colorimetric detection of complement-mediated cytotoxicity based on the measurement of cytoplasmic lactate dehydrogenase activity. J Immunol Methods 196: 175–180

    Article  PubMed  CAS  Google Scholar 

  32. Blanquet-Grossard F, Thielens NM, Vendrely C et al (2005) Complement protein C1q recognizes a conformationally modified form of the prion protein. Biochemistry 44:4349–4356

    Article  PubMed  CAS  Google Scholar 

  33. Idusogie EE, Wong PY, Presta LG et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166: 2571–2575

    PubMed  CAS  Google Scholar 

  34. Daha MR, Gorter A, Rits M et al (1989) Interaction of immunoglobulin A with complement and phagocytic cells. Prog Clin Biol Res 297:247–260, discussion 260–261

    PubMed  CAS  Google Scholar 

  35. Chuang PD, Morrison SL (1997) Elimination of N-linked glycosylation sites from the human IgA1 constant region: effects on structure and function. J Immunol 158:724–732

    PubMed  CAS  Google Scholar 

  36. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ et al (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868

    PubMed  CAS  Google Scholar 

  37. Hiemstra PS, Gorter A, Stuurman ME et al (1987) Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol 17:321–326

    Article  PubMed  CAS  Google Scholar 

  38. Pfaffenbach G, Lamm ME, Gigli I (1982) Activation of the guinea pig alternative complement pathway by mouse IgA immune complexes. J Exp Med 155:231–247

    Article  PubMed  CAS  Google Scholar 

  39. Pawluczkowycz AW, Beurskens FJ, Beum PV et al (2009) Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol 183: 749–758

    Article  PubMed  CAS  Google Scholar 

  40. Beum PV, Lindorfer MA, Hall BE et al (2006) Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer. J Immunol Methods 317:90–99

    Article  PubMed  CAS  Google Scholar 

  41. Karagiannis SN, Wang Q, East N et al (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Fei D, Vanderlaan M et al (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis 7:335–345

    Article  PubMed  CAS  Google Scholar 

  43. Tai YT, Li X, Tong X et al (2005) Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 65:5898–5906

    Article  PubMed  CAS  Google Scholar 

  44. Gomez-Roman VR, Florese RH, Patterson LJ et al (2006) A simplified method for the rapid fluorometric assessment of antibody-dependent cell-mediated cytotoxicity. J Immunol Methods 308:53–67

    Article  PubMed  CAS  Google Scholar 

  45. Kolber MA, Quinones RR, Gress RE et al (1988) Measurement of cytotoxicity by target cell release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). J Immunol Methods 108:255–264

    Article  PubMed  CAS  Google Scholar 

  46. Whiteside TL, Bryant J, Day R et al (1990) Natural killer cytotoxicity in the diagnosis of immune dysfunction: criteria for a reproducible assay. J Clin Lab Anal 4:102–114

    Article  PubMed  CAS  Google Scholar 

  47. Blomberg K, Granberg C, Hemmila I et al (1986) Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 86:225–229

    Article  PubMed  CAS  Google Scholar 

  48. Blomberg K, Granberg C, Hemmila I et al (1986) Europium-labelled target cells in an assay of natural killer cell activity. II. A novel non-radioactive method based on time-resolved fluorescence. Significance and specificity of the method. J Immunol Methods 92:117–123

    Article  PubMed  CAS  Google Scholar 

  49. Hemmila I, Dakubu S, Mukkala VM et al (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137:335–343

    Article  PubMed  CAS  Google Scholar 

  50. von Zons P, Crowley-Nowick P, Friberg D et al (1997) Comparison of europium and chromium release assays: cytotoxicity in healthy individuals and patients with cervical carcinoma. Clin Diagn Lab Immunol 4:202–207

    Google Scholar 

  51. Wallace PK, Kaufman PA, Lewis LD et al (2001) Bispecific antibody-targeted phagocytosis of HER-2/neu expressing tumor cells by myeloid cells activated in vivo. J Immunol Methods 248:167–182

    Article  PubMed  CAS  Google Scholar 

  52. Guyre CA, Gomes D, Smith KA et al (2008) Development of an in vivo antibody-mediated killing (IVAK) model, a flow cytometric method to rapidly evaluate therapeutic antibodies. J Immunol Methods 333:51–60

    Article  PubMed  CAS  Google Scholar 

  53. Di Gaetano N, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587

    PubMed  Google Scholar 

  54. Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand 77:758–760

    Article  PubMed  CAS  Google Scholar 

  55. Reddy S, Piccione D, Takita H et al (1987) Human lung tumor growth established in the lung and subcutaneous tissue of mice with severe combined immunodeficiency. Cancer Res 47:2456–2460

    PubMed  CAS  Google Scholar 

  56. Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    Article  PubMed  CAS  Google Scholar 

  57. Mombaerts P, Iacomini J, Johnson RS et al (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  PubMed  CAS  Google Scholar 

  58. Prochazka M, Gaskins HR, Shultz LD et al (1992) The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA 89:3290–3294

    Article  PubMed  CAS  Google Scholar 

  59. Brehm MA, Bortell R, Diiorio P et al (2010) Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rgammanull Ins2Akita mice. Diabetes 59:2265–2270

    Article  PubMed  CAS  Google Scholar 

  60. Colucci F, Soudais C, Rosmaraki E et al (1999) Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162:2761–2765

    PubMed  CAS  Google Scholar 

  61. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  PubMed  CAS  Google Scholar 

  62. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174: 6477–6489

    PubMed  CAS  Google Scholar 

  63. Pearson T, Shultz LD, Miller D et al (2008) Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 154:270–284

    Article  PubMed  CAS  Google Scholar 

  64. Suemizu H, Monnai M, Ohnishi Y et al (2007) Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/gammacnull (NOG) mice. Int J Oncol 31:741–751

    PubMed  CAS  Google Scholar 

  65. Le Devedec SE, van Roosmalen W, Maria N et al (2009) An improved model to study tumor cell autonomous metastasis programs using MTLn3 cells and the Rag2(−/−) gammac (−/−) mouse. Clin Exp Metastasis 26: 673–684

    Article  PubMed  Google Scholar 

  66. Bertilaccio MT, Scielzo C, Simonetti G et al (2010) A novel Rag2-/-gammac-/–xenograft model of human CLL. Blood 115:1605–1609

    Article  PubMed  CAS  Google Scholar 

  67. Nakanishi T, Chumsri S, Khakpour N et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102:815–826

    Article  PubMed  CAS  Google Scholar 

  68. Nijmeijer BA, van Schie ML, Halkes CJ et al (2010) A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood 116:5930–5940

    Article  PubMed  CAS  Google Scholar 

  69. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  70. McLarty K, Fasih A, Scollard DA et al (2009) 18F-FDG small-animal PET/CT differentiates trastuzumab-responsive from unresponsive human breast cancer xenografts in athymic mice. J Nucl Med 50:1848–1856

    Article  PubMed  CAS  Google Scholar 

  71. Palazon A, Teijeira A, Martinez-Forero I et al (2011) Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res 71: 801–811

    Article  PubMed  CAS  Google Scholar 

  72. Bergman I, Basse PH, Barmada MA et al (2000) Comparison of in vitro antibody-targeted cytotoxicity using mouse, rat and human effectors. Cancer Immunol Immunother 49:259–266

    Article  PubMed  CAS  Google Scholar 

  73. Niwa R, Shoji-Hosaka E, Sakurada M et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133

    Article  PubMed  CAS  Google Scholar 

  74. Stavenhagen JB, Gorlatov S, Tuaillon N et al (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67:8882–8890

    Article  PubMed  CAS  Google Scholar 

  75. Nigro EA, Brini AT, Soprana E et al (2009) Antitumor IgE adjuvanticity: key role of Fc epsilon RI. J Immunol 183:4530–4536

    Article  PubMed  CAS  Google Scholar 

  76. Zalevsky J, Chamberlain AK, Horton HM et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28:157–159

    Article  PubMed  CAS  Google Scholar 

  77. Pathan NI, Chu P, Hariharan K et al (2008) Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23+ lymphoma cell lines. Blood 111:1594–1602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cogné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pascal, V., Laffleur, B., Cogné, M. (2012). Class-Specific Effector Functions of Therapeutic Antibodies. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics