Generation of Fluorescent IgG Fusion Proteins in Mammalian Cells

  • Alexander K. Haas
  • Klaus Mayer
  • Ulrich BrinkmannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 901)


The generation of recombinantly produced fluorescent antibody derivatives that are derived from full-length immunoglobulin G (IgG) has until now been problematic. One major reason for that lies in different and partially incompatible secretion- and folding-requirements of antibodies and green fluorescent protein (GFP) derived fluorescent entities in mammalian cells. The use of citrine as fluorescent fusion entity can overcome this limitation. Citrine is a modified yellow fluorescent protein (YFP) derivative which in contrast to GFP and yellow fluorescent protein (YFP) folds effectively and properly in the endoplasmic reticulum (ER) of mammalian cells. Provided that proper design parameters regarding fusion positions and linker/connector sequences are applied, citrine can be fused to different positions of IgGs and be expressed without interfering with secretion capability or functionality of IgG–citrine derivatives. Because IgG–citrine fusions are stable and retain biophysical properties of IgGs, they can be expressed and purified in the same manner as regular antibodies. IgG–citrine fusions not only retain the binding properties (affinity and specificity) of antibodies but also contain Fc-regions (useful for immunoassay applications), and are fully defined molecules (in contrast to antibody conjugates with fluorophores).

Key words

Immunoglobulin G Multifunctional antibody Citrine Antibody-fusion protein Green fluorescent protein Enhanced green fluorescent protein Yellow fluorescent protein Fluorobodies Fluorescent antibodies 


  1. 1.
    Casey JL, Coley AM, Tilley LM, Foley M (2000) Green fluorescent antibodies: novel in vitro tools. Protein Eng 13:445–452PubMedCrossRefGoogle Scholar
  2. 2.
    Griep RA, van TC, van der Wolf JM, Schots A (1999) Fluobodies green fluorescent single-chain Fv fusion proteins. J Immunol Methods 230:121–130PubMedCrossRefGoogle Scholar
  3. 3.
    Morino K, Katsumi H, Akahori Y et al (2001) Antibody fusions with fluorescent proteins: a versatile reagent for profiling protein expression. J Immunol Methods 257: 175–184PubMedCrossRefGoogle Scholar
  4. 4.
    Schwalbach G, Sibler AP, Choulier L et al (2000) Production of fluorescent single-chain antibody fragments in Escherichia coli. Protein Exp Purif 18:121–132CrossRefGoogle Scholar
  5. 5.
    Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395PubMedCrossRefGoogle Scholar
  6. 6.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedCrossRefGoogle Scholar
  7. 7.
    Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194PubMedCrossRefGoogle Scholar
  8. 8.
    Haas AK, von SC, Matscheko D, Brinkmann U (2010) Fluorescent citrine-IgG fusion proteins produced in mammalian cells. MAb 2: 648–661CrossRefGoogle Scholar
  9. 9.
    Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16:677–681PubMedCrossRefGoogle Scholar
  10. 10.
    Ridgway JB, Presta LG, Carter P (1996) ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621PubMedCrossRefGoogle Scholar
  11. 11.
    Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 102:6350–6355PubMedCrossRefGoogle Scholar
  12. 12.
    Nyfeler B, Hauri HP (2007) Visualization of protein interactions inside the secretory pathway. Biochem Soc Trans 35:970–973PubMedCrossRefGoogle Scholar
  13. 13.
    Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, Bassi R, Abdullah R, Hooper AT, Koo H, Jimenez X, Johnson D, Apblett R, Kussie P, Bohlen P, Witte L, Hicklin DJ, Ludwig DL (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63:8912–8921PubMedGoogle Scholar
  14. 14.
    Gong Y, Yao E, Shen R, Goel A, Arcila M, Teruya-Feldstein J, Zakowski MF, Frankel S, Peifer M, Thomas RK, Ladanyi M, Pao W (2009) High expression levels of total IGF-1R and sensitivity of NSCLC cells in vitro to an anti-IGF-1R antibody (R1507). PLoS One 4:e7273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alexander K. Haas
    • 1
  • Klaus Mayer
    • 1
  • Ulrich Brinkmann
    • 1
    Email author
  1. 1.Large Molecule Research, Roche Pharma Research and Early DevelopmentPenzbergGermany

Personalised recommendations