Advertisement

Bispecific Antibody Derivatives Based on Full-Length IgG Formats

  • Michael Grote
  • Alexander K. Haas
  • Christian Klein
  • Wolfgang Schaefer
  • Ulrich BrinkmannEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 901)

Abstract

Monoclonal antibodies have emerged as an effective therapeutic modality, and numerous antibodies have been approved for the treatment of several severe diseases or are currently in clinical development. To improve their therapeutic potential, monoclonal antibodies are constantly evolved by protein engineering. Particularly, the generation of bispecific antibodies raised special interest because of their ability to bind two different antigens at the same time, and the efficiency of these formats has been demonstrated in several clinical and preclinical studies. Up to now, the major drawbacks in using bispecific antibodies as a therapeutic agent have been difficult design and low-yield expression of homogeneous antibody populations. However, major technological improvements were made in protein engineering during the last years. This allows the design of several new IgG-based bispecific antibody formats that can be prepared in high yields and high homogeneity using conventional expression and purification techniques. Especially, recent development of IgG-fusions with disulfide-stabilized Fv fragments and of CrossMab-technologies facilitates the generation of bispecific antibodies with IgG-like architectures. Here we describe design principles and methods to express and purify different bispecific antibody formats derived from full-length IgGs.

Key words

Bispecific antibody Single-chain variable fragment (scFv) Disulfide-stabilized Fv antibody fragment (dsFv) CrossMab Knobs-into-holes 

References

  1. 1.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  2. 2.
    Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233PubMedCrossRefGoogle Scholar
  3. 3.
    Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316PubMedCrossRefGoogle Scholar
  4. 4.
    Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327PubMedCrossRefGoogle Scholar
  5. 5.
    Kontermann RE (2010) Alternative antibody formats. Curr Opin Mol Ther 12:176–183PubMedGoogle Scholar
  6. 6.
    Lu D, Jimenez X, Zhang H et al (2001) Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res 61:7002–7008PubMedGoogle Scholar
  7. 7.
    Bostrom J, Yu SF, Kan D et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614PubMedCrossRefGoogle Scholar
  8. 8.
    Lu D, Zhang H, Ludwig D et al (2004) Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 279:2856–2865PubMedCrossRefGoogle Scholar
  9. 9.
    Lu D, Zhang H, Koo H et al (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280:19665–19672PubMedCrossRefGoogle Scholar
  10. 10.
    Wu C, Ying H, Grinnell C et al (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297PubMedCrossRefGoogle Scholar
  11. 11.
    Wu C, Ying H, Bose S et al (2009) Molecular construction and optimization of anti-human IL-1alpha/beta dual variable domain immunoglobulin (DVD-Ig) molecules. MAbs 1:339–347PubMedCrossRefGoogle Scholar
  12. 12.
    Lum LG, Davol PA (2005) Retargeting T cells and immune effector cells with bispecific antibodies. Cancer Chemother Biol Response Modif 22:273–291PubMedCrossRefGoogle Scholar
  13. 13.
    Behar G, Siberil S, Groulet A et al (2008) Isolation and characterization of anti-­FcgammaRIII (CD16) llama single-domain antibodies that activate natural killer cells. Protein Eng Des Sel 21:1–10PubMedCrossRefGoogle Scholar
  14. 14.
    Muller D, Kontermann RE (2007) Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Ther 9:319–326PubMedGoogle Scholar
  15. 15.
    Krop IE, Beeram M, Modi S et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704PubMedCrossRefGoogle Scholar
  16. 16.
    Burris HA, Rugo HS, Vukelja SJ et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29:398–405PubMedCrossRefGoogle Scholar
  17. 17.
    Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  18. 18.
    Ronca R, Sozzani S, Presta M, Alessi P (2009) Delivering cytokines at tumor site: the immunocytokine-conjugated anti-EDB-fibronectin antibody case. Immunobiology 214:800–810PubMedCrossRefGoogle Scholar
  19. 19.
    Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8:E532–E551PubMedCrossRefGoogle Scholar
  20. 20.
    Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 40:122–135PubMedCrossRefGoogle Scholar
  21. 21.
    Metz S, Haas AK, Daub K et al (2011) Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc Natl Acad Sci U S A 108:8194–8199PubMedCrossRefGoogle Scholar
  22. 22.
    Goldenberg DM, Chatal JF, Barbet J et al (2007) Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther 2:19–31PubMedCrossRefGoogle Scholar
  23. 23.
    Milstein C, Cuello AC (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature 305:537–540PubMedCrossRefGoogle Scholar
  24. 24.
    Suresh MR, Cuello AC, Milstein C (1986) Bispecific monoclonal antibodies from hybrid hybridomas. Methods Enzymol 121:210–228PubMedCrossRefGoogle Scholar
  25. 25.
    Lindhofer H, Mocikat R, Steipe B, Thierfelder S (1995) Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 155:219–225PubMedGoogle Scholar
  26. 26.
    Zeidler R, Mysliwietz J, Csanady M et al (2000) The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer 83:261–266PubMedCrossRefGoogle Scholar
  27. 27.
    Morecki S, Lindhofer H, Yacovlev E et al (2008) Induction of long-lasting antitumor immunity by concomitant cell therapy with allogeneic lymphocytes and trifunctional bispecific antibody. Exp Hematol 36:997–1003PubMedCrossRefGoogle Scholar
  28. 28.
    Burges A, Wimberger P, Kumper C et al (2007) Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res 13:3899–3905PubMedCrossRefGoogle Scholar
  29. 29.
    Lum LG, Davol PA, Lee RJ (2006) The new face of bispecific antibodies: targeting cancer and much more. Exp Hematol 34:1–6PubMedCrossRefGoogle Scholar
  30. 30.
    Repp R, van Ojik HH, Valerius T et al (2003) Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 89:2234–2243PubMedCrossRefGoogle Scholar
  31. 31.
    Marvin JS, Zhu Z (2005) Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacol Sin 26:649–658PubMedCrossRefGoogle Scholar
  32. 32.
    Muller D, Kontermann RE (2010) Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 24:89–98PubMedCrossRefGoogle Scholar
  33. 33.
    Kipriyanov SM, Le Gall F (2004) Recent advances in the generation of bispecific antibodies for tumor immunotherapy. Curr Opin Drug Discov Dev 7:233–242Google Scholar
  34. 34.
    Fischer N, Leger O (2007) Bispecific antibodies: molecules that enable novel therapeutic strategies. Pathobiology 74:3–14PubMedCrossRefGoogle Scholar
  35. 35.
    Schirrmann T, Al-Halabi L, Dubel S, Hust M (2008) Production systems for recombinant antibodies. Front Biosci 13:4576–4594PubMedCrossRefGoogle Scholar
  36. 36.
    Kubetzko S, Balic E, Waibel R et al (2006) PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem 281:35186–35201PubMedCrossRefGoogle Scholar
  37. 37.
    Muller D, Karle A, Meissburger B et al (2007) Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 282:12650–12660PubMedCrossRefGoogle Scholar
  38. 38.
    Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725PubMedCrossRefGoogle Scholar
  39. 39.
    Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Dev 11:675–687Google Scholar
  40. 40.
    Bossenmaier B, Brinkmann U, Dormeyer W et al (2010) Bispecific Anti ErbB3/Anti cMet antibodies. Patent no. 120100256339Google Scholar
  41. 41.
    Glockshuber R, Malia M, Pfitzinger I, Pluckthun A (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29:1362–1367PubMedCrossRefGoogle Scholar
  42. 42.
    Bird RE, Hardman KD, Jacobson JW et al (1988) Single-chain antigen-binding proteins. Science 242:423–426PubMedCrossRefGoogle Scholar
  43. 43.
    Huston JS, Mudgett-Hunter M, Tai MS et al (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203:46–88PubMedCrossRefGoogle Scholar
  44. 44.
    Huston JS, Levinson D, Mudgett-Hunter M et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883PubMedCrossRefGoogle Scholar
  45. 45.
    Reiter Y, Brinkmann U, Lee B, Pastan I (1996) Engineering antibody Fv fragments for cancer detection and therapy: disulfide-stabilized Fv fragments. Nat Biotechnol 14:1239–1245PubMedCrossRefGoogle Scholar
  46. 46.
    Jung SH, Pastan I, Lee B (1994) Design of interchain disulfide bonds in the framework region of the Fv fragment of the monoclonal antibody B3. Proteins 19:35–47PubMedCrossRefGoogle Scholar
  47. 47.
    Reiter Y, Brinkmann U, Jung SH, Pastan I, Lee B (1995) Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng 8:1323–1331PubMedCrossRefGoogle Scholar
  48. 48.
    Ridgway JB, Presta LG, Carter P (1996) ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621PubMedCrossRefGoogle Scholar
  49. 49.
    Schaefer W, Regula JT, Bahner M et al (2011) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A 108:11187–11192PubMedCrossRefGoogle Scholar
  50. 50.
    Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561PubMedCrossRefGoogle Scholar
  51. 51.
    Merchant AM, Zhu Z, Yuan JQ et al (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16:677–681PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael Grote
    • 1
  • Alexander K. Haas
    • 1
  • Christian Klein
    • 2
  • Wolfgang Schaefer
    • 1
  • Ulrich Brinkmann
    • 1
    Email author
  1. 1.Large Molecule Research, Roche Pharma Research and Early DevelopmentPenzbergGermany
  2. 2.Large Molecule Research, Roche Pharma Research and Early DevelopmentSchlierenSwitzerland

Personalised recommendations