Production of Torularhodin, Torulene, and β-Carotene by Rhodotorula Yeasts

  • Martín Moliné
  • Diego Libkind
  • María van Broock
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 898)

Abstract

Yeasts of the genera Rhodotorula are able to synthesize different pigments of high economic value like β-carotene, torulene, and torularhodin, and therefore represent a biotechnologically interesting group of yeasts. However, the low production rate of pigment in these microorganisms limits its industrial application. Here we describe some strategies to obtain hyperpigmented mutants of Rhodotorula mucilaginosa by means of ultraviolet-B radiation, the procedures for total carotenoids extraction and quantification, and a method for identification of each pigment.

Key words

Torularhodin β-Carotene Carotenoids Rhodotorula Mutants UV-B radiation 

References

  1. 1.
    Fell JW, Statzell-Tallman A (1998) Rhodotorula F.C. Harrison. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study. Elsevier Science Publishers, Amsterdam, pp 800–827Google Scholar
  2. 2.
    Libkind D, Sampaio JP (2010) Rhodotorula. In: Liu D (ed) Molecular detection of foodborne pathogens. CRC Press, New York, pp 603–618Google Scholar
  3. 3.
    Disch A, Rohmer M (1998) On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 168:201–208PubMedCrossRefGoogle Scholar
  4. 4.
    Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031PubMedCrossRefGoogle Scholar
  5. 5.
    Bhosale PB (2001) Studies on yeast Rhodotorula, its carotenoids and their applications. Thesis, University of Pune, PuneGoogle Scholar
  6. 6.
    Bhosale P, Gadre RV (2001) Production of β-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresour Technol 76:53–55PubMedCrossRefGoogle Scholar
  7. 7.
    Cong L, Chi Z, Li J, Wang X (2007) Enhanced carotenoid production by a mutant of the marine yeast Rhodotorula sp. hidai. J Ocean Univ China 6:66–71CrossRefGoogle Scholar
  8. 8.
    Frengova GI, Simova ED, Beshkova DM (2004) Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis. Z Naturforsch C 59:99–103PubMedGoogle Scholar
  9. 9.
    Sakaki H, Nakanishi T, Satonaka K, Miki W, Fujita T, Komemushi S (2000) Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng 89:203–205PubMedCrossRefGoogle Scholar
  10. 10.
    Moliné M, Libkind D, Diéguez MC, van Broock M (2009) Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B 95:156–161PubMedCrossRefGoogle Scholar
  11. 11.
    Moliné M, Flores MR, Libkind D, Diéguez MC, Farías ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151PubMedCrossRefGoogle Scholar
  12. 12.
    Libkind D, Gadanho M, van Broock MR, Sampaio JP (2008) Studies on the heterogeneity of the carotenogenic yeast Rhodotorula mucilaginosa from Patagonia, Argentina. J Basic Microbiol 48:93–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Martín Moliné
    • 1
  • Diego Libkind
    • 1
  • María van Broock
    • 1
  1. 1.Laboratorio de Microbiología Aplicada y Biotecnología BarilocheINIBIOMA (CONICET-Universidad del COMAHUE)San Carlos de BarilocheArgentina

Personalised recommendations