Skip to main content

Immobilization of Fluorescent Aptamer Biosensors on Magnetic Microparticles and Its Potential Application for Ocean Sensing

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 762 Accesses

Abstract

Many important analytes are present in the ocean water and primary examples include various marine toxins. The unique marine environment possesses an extremely high ionic strength, posing a significant analytical challenge for biosensor design. Protein-based enzymes and antibodies are likely to denature under such non-physiological conditions. Aptamers are nucleic acid-based binding molecules that can be obtained using a combinatorial in vitro selection technique. Since such selections are carried out in the absence of living cells, it is possible to obtain aptamers that work optimally under high salt conditions. Similarly selections in low pH and high temperatures have already been carried out. The high salt concentration in marine samples may also cause significant fluorescence quenching, reducing the sensitivity of fluorescent aptamer sensors. We propose that this problem may be solved by immobilization of aptamer-based biosensors on magnetic microparticles, allowing spatial separation of the target binding and the fluorescence detection steps. In this chapter, we describe a protocol for the detection of adenosine and ATP in high salt buffers and in human blood serum. Compared to the non-immobilized sensor, more consistent results with reduced interference were achieved after immobilization. Future research directions of using such immobilized sensors for marine detection are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner APF (2000) Techview: biochemistry: biosensors-sense and sensitivity. Science 290:1315–1317

    Article  PubMed  CAS  Google Scholar 

  2. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  PubMed  CAS  Google Scholar 

  3. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  PubMed  CAS  Google Scholar 

  4. Metfies K, Huljic S, Lange M, Medlin LK (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20:1349–1357

    Article  PubMed  CAS  Google Scholar 

  5. Kroger S, Piletsky S, Turner APF (2002) Biosensors for marine pollution research, monitoring and control. Mar Pollut Bull 45:24–34

    Article  PubMed  CAS  Google Scholar 

  6. Dove A (2009) Long-term trends in major ions and nutrients in Lake Ontario. Aquat Ecosyst Health Manage 12:281–295

    Article  CAS  Google Scholar 

  7. Azoulay A, Garzon P, Eisenberg MJ (2001) Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med 16:168–175

    Article  PubMed  CAS  Google Scholar 

  8. Webb DA (1939) The sodium and potassium content of sea water. J Exp Biol 16:178–183

    CAS  Google Scholar 

  9. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  10. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  11. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  PubMed  CAS  Google Scholar 

  12. Zhang X-B, Kong R-M, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    Article  CAS  Google Scholar 

  13. Fang XH, Tan WH (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    Article  PubMed  CAS  Google Scholar 

  14. Mayer G, Ahmed MSL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5:1993–2004

    Article  PubMed  CAS  Google Scholar 

  15. Sefah K, Shangguan D, Xiong XL, O’Donoghue MB, Tan WH (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169–1185

    Article  PubMed  CAS  Google Scholar 

  16. Marshall KA, Ellington AD (2000) In vitro selection of RNA aptamers. RNA-Ligand Interact B 318:193–214

    Article  CAS  Google Scholar 

  17. Liu Z, Mei SHJ, Brennan JD, Li Y (2003) Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J Am Chem Soc 125:7539–7545

    Article  PubMed  CAS  Google Scholar 

  18. Nelson KE, Bruesehoff PJ, Lu Y (2005) In vitro selection of high temperature Zn2+-dependent DNAzymes. J Mol Evol 61:216–225

    Article  PubMed  CAS  Google Scholar 

  19. Cho EJ, Lee J-W, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  20. Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281

    Article  PubMed  CAS  Google Scholar 

  21. Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  PubMed  Google Scholar 

  22. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  PubMed  CAS  Google Scholar 

  23. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, Glick G, Ellington AD (2000) Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc 122:2469–2473

    Article  CAS  Google Scholar 

  24. Nutiu R, Li Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chem Eur J 10:1868–1876

    Article  PubMed  CAS  Google Scholar 

  25. Nutiu R, Li Y (2003) Structure-switching ­signaling aptamers. J Am Chem Soc 125:4771–4778

    Article  PubMed  CAS  Google Scholar 

  26. Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci U S A 102:17278–17283

    Article  PubMed  CAS  Google Scholar 

  27. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    Article  PubMed  CAS  Google Scholar 

  28. Jiang Y, Fang X, Bai C (2004) Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 76:5230

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Liu B (2008) Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Commun:4759–4761.

    Google Scholar 

  30. Storhoff JJ, Mirkin CA (1999) Programmed Materials Synthesis with DNA. Chem Rev 99:1849–1862

    Article  PubMed  CAS  Google Scholar 

  31. Swearingen CB, Wernette DP, Cropek DM, Lu Y, Sweedler JV, Bohn PW (2005) Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. Anal Chem 77:442–448

    Article  PubMed  CAS  Google Scholar 

  32. Carrasquilla C, Li Y, Brennan JD (2011) Surface immobilization of structure-switching DNA aptamers on macroporous sol–gel-derived films for solid-phase biosensing applications. Anal Chem 83:957–965

    Article  PubMed  CAS  Google Scholar 

  33. Yang RH, Jin JY, Chen Y, Shao N, Kang HZ, Xiao Z, Tang ZW, Wu YR, Zhu Z, Tan WH (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358

    Article  PubMed  CAS  Google Scholar 

  34. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  35. Zhu Z, Wu CC, Liu HP, Zou Y, Zhang XL, Kang HZ, Yang CJ, Tan WH (2010) An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem Int Ed 49:1052–1056

    Article  CAS  Google Scholar 

  36. Yang HH, Liu HP, Kang HZ, Tan WH (2008) Engineering target-responsive hydrogels based on aptamer - target interactions. J Am Chem Soc 130:6320–6321

    Article  PubMed  CAS  Google Scholar 

  37. Liu J (2011) Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 7:6757–6767

    Article  CAS  Google Scholar 

  38. Dave N, Huang P-JJ, Chan MY, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668–12673

    Article  PubMed  CAS  Google Scholar 

  39. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32(178–80):82–83

    Google Scholar 

  40. Ma CP, Wang WS, Yang Q, Shi C, Cao LJ (2011) Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads. Biosens Bioelectron 26:3309–3312

    Article  PubMed  CAS  Google Scholar 

  41. Bi S, Li L, Zhang SS (2010) Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem 82:9447–9454

    Article  PubMed  CAS  Google Scholar 

  42. Huang PJJ, Liu JW (2010) Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal Chem 82:4020–4026

    Article  PubMed  CAS  Google Scholar 

  43. Huang P-JJ, Liu J (2011) Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chem A Eur J 17:5004–5010

    Article  CAS  Google Scholar 

  44. Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2009) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82:197–202

    Article  Google Scholar 

  45. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665

    Article  PubMed  CAS  Google Scholar 

  46. Joseph KA, Dave N, Liu J (2011) Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection. ACS Appl Mater Interfaces 3:733–739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, PJ.J., Khimji, I., Liu, J. (2012). Immobilization of Fluorescent Aptamer Biosensors on Magnetic Microparticles and Its Potential Application for Ocean Sensing. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics