Skip to main content

Ultrasensitive Visual Fluorescence Detection of Heavy Metal Ions in Water Based on DNA-Functionalized Hydrogels

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 797 Accesses

Abstract

Heavy metal contamination of oceans, lakes, and other water resources can occur by both natural and human-related processes. Human exposure to heavy metals such as mercury is known to cause a number of serious health problems. Due to its high toxicity and bioaccumulative properties, the maximum toxic level of mercury in drinking water is set to be 10 nM or 2 parts-per-billion by the US EPA. Therefore, detection of mercury at such a low concentration poses an analytical challenge. While analytical instruments such as ICP-MS are still very widely used for heavy metal analysis, biosensors, are emerging as a cost-effective alternative allowing on-site and real-time detection. We herein describe a protocol for preparing polyacrylamide hydrogel-based biosensors functionalized with a thymine-rich DNA that can effectively detect mercury in water. Detection is achieved by the selective binding of Hg2+ between two thymine bases inducing a hairpin structure where upon the addition of SYBR Green I dye, green fluorescence is observed. In the absence of Hg2+, the addition of the dye results in yellow fluorescence. This hydrogel-based sensor can easily detect 10 nM Hg2+ using the naked eye, can be regenerated using a simple acid treatment, and can be dried for storage and easily rehydrated. This sensor is also used to detect Hg2+ from Lake Ontario water samples spiked with mercury. In the case where a cationic gel formulation is used, the background fluorescence can be effectively suppressed to increase sensitivity. The future research directions of using such gels to detect other metal ions and to detect metal ions in ocean water are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  2. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  PubMed  CAS  Google Scholar 

  3. Prego R, Cobelo-Garcia A (2004) Cadmium, copper and lead contamination of the seawater column on the Prestige shipwreck (NE Atlantic Ocean). Anal Chim Acta 524:23–26

    Article  CAS  Google Scholar 

  4. Mason RP, Fitzgerald WF (1990) Alkylmercury species in the equatorial pacific. Nature 347: 457–459

    Article  CAS  Google Scholar 

  5. Han F, Shan XQ, Zhang SZ, Wen B (2004) Mercury speciation in China’s coastal surface seawaters. Int J Environ Anal Chem 84: 583–598

    Article  CAS  Google Scholar 

  6. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Mikrochim Acta 126:177–192

    Article  CAS  Google Scholar 

  7. Wernette DP, Liu JW, Bohn PW, Lu Y (2008) Functional-DNA-based nanoscale materials and devices for sensing trace contaminants in water. MRS Bull 33:34–41

    Article  CAS  Google Scholar 

  8. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  PubMed  CAS  Google Scholar 

  9. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  10. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X-B, Kong R-M, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    Article  CAS  Google Scholar 

  12. Breaker RR (1997) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1:26–31

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467

    Article  CAS  Google Scholar 

  14. Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric ions. Angew Chem Int Ed 47:4346–4350

    Article  CAS  Google Scholar 

  15. Liu J, Lu Y (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839

    Article  PubMed  CAS  Google Scholar 

  16. Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056–2061

    Article  PubMed  CAS  Google Scholar 

  17. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  PubMed  CAS  Google Scholar 

  18. Rajendran M, Ellington AD (2008) Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 390: 1067–1075

    Article  PubMed  CAS  Google Scholar 

  19. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T et al (2006) MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172

    Article  PubMed  CAS  Google Scholar 

  20. Ono A, Togashi H (2004) Molecular sensors: highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    Article  CAS  Google Scholar 

  21. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Comm 39:4825–4827

    Article  PubMed  Google Scholar 

  22. Ueyama H, Takagi M, Takenaka S (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion ­complex formation. J Am Chem Soc 124:14286–14287

    Article  PubMed  CAS  Google Scholar 

  23. Li T, Dong S, Wang E (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132: 13156–13157

    Article  PubMed  CAS  Google Scholar 

  24. Nolan EM, Lippard SJ (2003) A “turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125:14270–14271

    Article  PubMed  CAS  Google Scholar 

  25. Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46: 7587–7590

    Article  CAS  Google Scholar 

  26. Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267

    Article  CAS  Google Scholar 

  27. Wang J, Liu B (2008) Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Comm:4759–4761

    Google Scholar 

  28. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media by DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46: 4093–4096

    Article  CAS  Google Scholar 

  29. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47:3927–3931

    Article  CAS  Google Scholar 

  30. Liu S-J, Nie H-G, Jiang J-H, Shen G-L, Yu R-Q (2009) Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal Chem 81:5724–5730

    Article  PubMed  CAS  Google Scholar 

  31. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  32. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5:797–801

    Article  PubMed  CAS  Google Scholar 

  33. Yang HH, Liu HP, Kang HZ, Tan WH (2008) Engineering target-responsive hydrogels based on aptamer: target interactions. J Am Chem Soc 130:6320–6321

    Article  PubMed  CAS  Google Scholar 

  34. Dave N, Huang P-JJ, Chan MY, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668–12673

    Article  PubMed  CAS  Google Scholar 

  35. Dove A (2009) Long-term trends in major ions and nutrients in Lake Ontario. Aquat Ecosyst Health Manage 12:281–295

    Article  CAS  Google Scholar 

  36. Joseph KA, Dave N, Liu J (2011) Electrostatically directed visual fluorescence response of DNA-functionalized monolithic hydrogels for highly sensitive Hg2+ detection. ACS Appl Mater Inter 3:733–739

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, J., Dave, N., Huang, PJ.J. (2012). Ultrasensitive Visual Fluorescence Detection of Heavy Metal Ions in Water Based on DNA-Functionalized Hydrogels. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics