Radioligand Binding Assays and Their Analysis

  • Janet J. MaguireEmail author
  • Rhoda E. Kuc
  • Anthony P. Davenport
Part of the Methods in Molecular Biology book series (MIMB, volume 897)


Radioligand binding is widely used to characterize receptors and determine their anatomical distribution, particularly the superfamily of seven transmembrane-spanning G protein-coupled receptors for both established transmitters such as endothelin-1 and an increasing number of orphan receptors recently paired with their cognate ligands. Three types of assay are described. In saturation experiments, tissue sections, cultured cells, or homogenates are incubated with an increasing concentration of a radiolabeled ligand, which can be a labeled analog of a naturally occurring transmitter, hormone, or synthetic drug. Analysis using iterative nonlinear curve-fitting programs, such as KELL, measures the affinity of the labeled ligand for a receptor (equilibrium dissociation constant, K D ), receptor density (B max), and Hill slope (nH). The affinity and selectivity of an unlabeled ligand to compete for the binding of a fixed concentration of a radiolabeled ligand to a receptor are determined using a competition binding assay. Kinetic assays measure the rate of association to or dissociation from a receptor from which a kinetic K D may be derived. Quantitative autoradiography and image analysis is a sensitive technique to detect low levels of radiolabeled ligands and determine the anatomical distribution of receptors in sections that retain the morphology of the tissue. The measurement of bound radioligand within discrete regions of autoradiographical images using ­computer-assisted image analysis is described.

Key words

Endothelin Apelin Ghrelin Motilin Neuropeptide W Urocortin II/III Urotensin II Equilibrium dissociation constant Bmax Hill slope Orphan receptor Quantitative autoradiography Image analysis Knockout mouse 



We thank the British Heart Foundation for support, grant numbers PG/09/050/27734 and RG/10/077/28300. Supported in part by the NIHR Cambridge Biomedical Research Centre.


  1. 1.
    Paton WD, Rang HP (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc R Soc Lond B 163: 1–44PubMedCrossRefGoogle Scholar
  2. 2.
    Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288PubMedCrossRefGoogle Scholar
  3. 3.
    Ozawa A, Lindberg I, Roth B, Kroeze WK (2010) Deorphanization of novel peptides and their receptors. AAPS J 12:378–384PubMedCrossRefGoogle Scholar
  4. 4.
    Wise A, Jupe SC, Rees S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44: 43–66PubMedCrossRefGoogle Scholar
  5. 5.
    Katugampola S, Davenport AP (2003) Emerging roles for orphan G protein-coupled receptors in the cardiovascular system. Trends Pharmacol Sci 24:30–35PubMedCrossRefGoogle Scholar
  6. 6.
    Davenport AP (2003) Peptide and trace amine orphan receptors: prospects for new therapeutic targets. Curr Opin Pharmacol 3:127–134PubMedCrossRefGoogle Scholar
  7. 7.
    Davenport AP, Macphee CH (2003) Translating the human genome: renaissance of cardiovascular receptor pharmacology. Curr Opin Pharmacol 3:111–113PubMedCrossRefGoogle Scholar
  8. 8.
    Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin JP, Ruffolo RR, Searls DB, Wright MW, Spedding M (2009) IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 37:D680–D685PubMedCrossRefGoogle Scholar
  9. 9.
    Thathiah A, Spittaels K, Hoffmann M, Staes M, Cohen A, Horre K, Vanbrabant M, Coun F, Baekelandt V, Delacourte A, Fischer DF, Pollet D, De Strooper B, Merchiers P (2009) The orphan G protein-coupled receptor 3 modulates amyloid-beta peptide generation in neurons. Science 323:946–951PubMedCrossRefGoogle Scholar
  10. 10.
    Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60PubMedCrossRefGoogle Scholar
  11. 11.
    Jones K, Maguire J, Davenport A (2011) Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol 162:1453–1469PubMedCrossRefGoogle Scholar
  12. 12.
    Monastyrskaia K, Lundstrom K, Plahl D, Acuna G, Schweitzer C, Malherbe P, Mutel V (1999) Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br J Pharmacol 128:1027–1034PubMedCrossRefGoogle Scholar
  13. 13.
    Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16:1299–1304PubMedCrossRefGoogle Scholar
  14. 14.
    Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31:499–508PubMedCrossRefGoogle Scholar
  15. 15.
    El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469PubMedCrossRefGoogle Scholar
  16. 16.
    Dong M, Gao F, Pinon DI, Miller LJ (2008) Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors. Mol Endocrinol 22:1489–1499PubMedCrossRefGoogle Scholar
  17. 17.
    Urwyler S (2011) Allosteric modulation of family C G protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 63:59–126PubMedCrossRefGoogle Scholar
  18. 18.
    Schulte G (2010) International union of basic and clinical pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 62:632–667PubMedCrossRefGoogle Scholar
  19. 19.
    Davenport AP, O’Reilly G, Molenaar P, Maguire JJ, Kuc RE, Sharkey A et al (1993) Human endothelin receptors characterised using reverse transcriptase-polymerase chain reaction, in situ hybridization and sub-type selective ligands BQ123 and BQ3020: evidence for expression of ETB receptors in human vascular smooth muscle. J Cardiovasc Pharmacol 22(S8):22–25CrossRefGoogle Scholar
  20. 20.
    Molenaar P, O’Reilly G, Sharkey A, Kuc RE, Harding DP, Plumpton P et al (1993) Characterization and localization of endothelin receptor sub-types in the human atrio-ventricular conducting system and myocardium. Circ Res 72:526–538PubMedCrossRefGoogle Scholar
  21. 21.
    Davenport AP, O’Reilly G, Kuc RE (1995) Endothelin ETA and ETB mRNA and receptors expressed by smooth muscle in the human vasculature: majority of the ETA sub-type. Br J Pharmacol 114:1110–1116PubMedCrossRefGoogle Scholar
  22. 22.
    Katugampola SD, Pallikaros Z, Davenport AP (2001) [125I-His9]-ghrelin, a novel radioligand for localizing ghs orphan receptors in human and rat tissue: up-regulation of receptors with atherosclerosis. Br J Pharmacol 134: 143–149PubMedCrossRefGoogle Scholar
  23. 23.
    Davenport AP (2002) International union of pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol Rev 54: 219–226PubMedCrossRefGoogle Scholar
  24. 24.
    Davenport AP, Maguire JJ (2006) Endothelin. Handb Exp Pharmacol 176:295–329PubMedCrossRefGoogle Scholar
  25. 25.
    Vachiery JL, Davenport A (2009) The endothelin system in pulmonary and renal vasculopathy: les liaisons dangereuses. Eur Respir Rev 18:260–271PubMedCrossRefGoogle Scholar
  26. 26.
    Davenport AP, Kuc RE, Fitzgerald F, Maguire JJ, Berryman K, Doherty AM (1994) [125I]-PD15242, a selective radioligand for human ETA receptors. Br J Pharmacol 111:4–6PubMedCrossRefGoogle Scholar
  27. 27.
    Davenport AP, Kuc RE, Hoskins SL, Karet FE, Fitzgerald F (1994) [125I]-PD151242: a selective ligand for endothelin ETA receptors in human kidney which localises to renal vasculature. Br J Pharmacol 113:1303–1310PubMedCrossRefGoogle Scholar
  28. 28.
    Peter MG, Davenport AP (1995) Selectivity of [125I]-PD151242 for the human, rat and porcine endothelin ETA receptors in the heart. Br J Pharmacol 114:297–302PubMedCrossRefGoogle Scholar
  29. 29.
    Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237PubMedCrossRefGoogle Scholar
  30. 30.
    Hulme E (1992) Receptor–ligand interactions. IRL, Oxford, UKGoogle Scholar
  31. 31.
    de Jong LA, Uges DR, Franke JP, Bischoff R (2005) Receptor–ligand binding assays: technologies and applications. J Chromatogr B 829:1–25CrossRefGoogle Scholar
  32. 32.
    Carter CM, Leighton-Davies JR, Charlton SJ (2007) Miniaturized receptor binding assays: complications arising from ligand depletion. J Biomol Screen 12:255–266PubMedCrossRefGoogle Scholar
  33. 33.
    Vauquelin G, Charlton SJ (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol 161:488–508PubMedCrossRefGoogle Scholar
  34. 34.
    Kenakin T (2004) Principles: receptor theory in pharmacology. Trends Pharmacol Sci 25: 186–192PubMedCrossRefGoogle Scholar
  35. 35.
    Kenakin T (1993) Pharmacologic analysis of drug–receptor interactions. Raven, New York, NYGoogle Scholar
  36. 36.
    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304PubMedCrossRefGoogle Scholar
  37. 37.
    Neubig RR, Spedding M, Kenakin T, Christopoulos A (2003) International Union of Pharmacology Committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 11(55): 597–606CrossRefGoogle Scholar
  38. 38.
    Pitkin SL, Maguire JJ, Kuc RE, Davenport AP (2010) Modulation of the apelin/APJ system in heart failure and atherosclerosis in man. Br J Pharmacol 160:1785–1795PubMedCrossRefGoogle Scholar
  39. 39.
    Molenaar P, Kuc RE, Davenport AP (1992) Characterization of two new ETB selective radioligands, [125I]-BQ3020 and [125I]-[Ala1,3,11,15]ET-1 in human heart. Br J Pharmacol 107:637–639PubMedCrossRefGoogle Scholar
  40. 40.
    Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132:1255–1260PubMedCrossRefGoogle Scholar
  41. 41.
    Wiley KE, Davenport AP (2004) CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Br J Pharmacol 143:508–514PubMedCrossRefGoogle Scholar
  42. 42.
    Kleinz MJ, Maguire JJ, Skepper JN, Davenport AP (2006) Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res 69:227–235PubMedCrossRefGoogle Scholar
  43. 43.
    Kirby HR, Maguire JJ, Colledge WH, Davenport AP (2010) International union of basic and clinical pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution and function. Pharmacol Rev 62:565–578PubMedCrossRefGoogle Scholar
  44. 44.
    Mead EJ, Maguire JJ, Kuc RE, Davenport AP (2007) Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br J Pharmacol 151:1143–1153PubMedCrossRefGoogle Scholar
  45. 45.
    Mead EJ, Maguire JJ, Kuc RE, Davenport AP (2007) Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology 148:140–147PubMedCrossRefGoogle Scholar
  46. 46.
    Singh G, Davenport AP (2006) Neuropeptide B and W: neurotransmitters in an emerging G protein-coupled receptor system. Br J Pharmacol 148:1033–1041PubMedCrossRefGoogle Scholar
  47. 47.
    Singh G, Maguire JJ, Kuc RE, Fidock M, Davenport AP (2004) Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res 1017:222–226PubMedCrossRefGoogle Scholar
  48. 48.
    Mitchell JD, Maguire JJ, Davenport AP (2009) Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S. Br J Pharmacol 158:87–103PubMedCrossRefGoogle Scholar
  49. 49.
    Mitchell JD, Maguire JJ, Kuc RE, Davenport AP (2009) Expression and vasoconstrictor function of anorexigenic peptides neuromedin U-25 and S in the human cardiovascular system. Cardiovasc Res 81:353–361PubMedCrossRefGoogle Scholar
  50. 50.
    Maguire JJ, Kuc RE, Davenport AP (2000) Orphan-receptor ligand human urotensin ii: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1. Br J Pharmacol 131:441–446PubMedCrossRefGoogle Scholar
  51. 51.
    Maguire JJ, Kuc RE, Kleinz MJ, Davenport AP (2008) Immunocytochemical localization of the urotensin-II receptor, UT, to rat and human tissues: relevance to function. Peptides 29:735–742PubMedCrossRefGoogle Scholar
  52. 52.
    Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP (2009) Inter­national union of pharmacology. LXXII. Recommendations for trace amine receptor nomenclature. Pharmacol Rev 61:1–8PubMedCrossRefGoogle Scholar
  53. 53.
    Kutzler MA, Molnar J, Schlafer DH, Kuc RE, Davenport AP, Nathanielsz PW (2003) Maternal dexamethasone increases endothelin-1 sensitivity and endothelin a receptor expression in ovine foetal placental arteries. Placenta 24:392–402PubMedCrossRefGoogle Scholar
  54. 54.
    Telemaque-Potts S, Kuc RE, Yanagisawa M, Davenport AP (2000) Tissue-specific modulation of endothelin receptors in a rat model of hypertension. J Cardiovasc Pharmacol 36(S1): 122–123Google Scholar
  55. 55.
    Telemaque-Potts S, Kuc RE, Maguire JJ, Ohlstein E, Yanagisawa M, Davenport AP (2002) Elevated systemic levels of endothelin-1 and blood pressure correlate with blunted constrictor responses and downregulation of endothelin A, but not endothelin B, receptors in an animal model of hypertension. Clin Sci (Lond) 103(Suppl 48):357S–362SGoogle Scholar
  56. 56.
    Davenport AP, Kuc RE (2004) Down-regulation of ETA receptors in ETB receptor-deficient mice. J Cardiovasc Pharmacol 44(Suppl 1): S276–S278PubMedCrossRefGoogle Scholar
  57. 57.
    Kuc RE, Davenport AP (2000) Endothelin-A-receptors in human aorta and pulmonary arteries are down regulated in patients with cardiovascular disease: an adaptive response to increased levels of ET-1? J Cardiovasc Pharmacol 36(S1):377–379Google Scholar
  58. 58.
    Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA, Gulliver-Sloan FH, Maguire JJ, Davenport AP, Kotelevtsev YV, Webb DJ (2010) Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 88:644–651PubMedCrossRefGoogle Scholar
  59. 59.
    Bagnall AJ, Kelland NF, Gulliver-Sloan F, Davenport AP, Gray GA, Yanagisawa M, Webb DJ, Kotelevtsev YV (2006) Deletion of endothelial cell endothelin B receptors does not affect blood pressure or sensitivity to salt. Hypertension 48:286–293PubMedCrossRefGoogle Scholar
  60. 60.
    Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239PubMedCrossRefGoogle Scholar
  61. 61.
    McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–228PubMedCrossRefGoogle Scholar
  62. 62.
    Davenport AP, Hall MD (1988) Comparison between brain paste and polymer standards for quantitative receptor autoradiography. J Neurosci Methods 25:75–82PubMedCrossRefGoogle Scholar
  63. 63.
    Pitkin SL, Maguire JJ, Bonner TI, Davenport AP (2010) International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology and function. Pharmacol Rev 62:331–342PubMedCrossRefGoogle Scholar
  64. 64.
    Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Janet J. Maguire
    • 1
    Email author
  • Rhoda E. Kuc
    • 1
  • Anthony P. Davenport
    • 2
  1. 1.Clinical Pharmacology UnitAddenbrooke’s Centre for Clinical Investigation, University of CambridgeCambridgeUK
  2. 2.Clinical Pharmacology UnitUniversity of Cambridge, Addenbrooke’s Centre for Clinical InvestigationCambridgeUK

Personalised recommendations