Advertisement

Immunogenetics pp 415-430 | Cite as

KIR Typing by Non-Sequencing Methods: Polymerase-Chain Reaction with Sequence-Specific Primers

  • David Ordóñez
  • Manuela Moraru
  • Natalia Gómez-Lozano
  • Elisa Cisneros
  • Carlos Vilches
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 882)

Abstract

The killer-cell immunoglobulin-like receptors (KIR), which enable NK cells to detect allogeneic target cells and abnormalities in the expression of self-HLA molecules, are encoded by genes that display extensive copy number variation. These variations in the KIR genotype are relevant for multiple aspects of human health, including therapy of cancer. PCR with sequence-specific primers (SSP) is simplest and most widely used among techniques for studying KIR genotypes. Here, we present a protocol that details the critical steps of a method for KIR genotyping by PCR-SSP.

Key words

Alloreactivity Copy number variation Electrophoresis Genotyping Killer-cell immunoglobulin-like receptors Hemopoietic transplant HLA Natural killer cells PCR Quality assurance 

Notes

Acknowledgements

This work was supported by grant SAF2010-22153-C03-03 from the Spanish Ministerio de Ciencia e Innovación. DO was supported by a grant from “Fundación LAIR”. NGL is supported by a grant from Instituto de Salud Carlos III (CP09/182). The authors have no conflicts of interest.

References

  1. 1.
    Wagtmann N et al (1995) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–449PubMedCrossRefGoogle Scholar
  2. 2.
    Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251PubMedCrossRefGoogle Scholar
  3. 3.
    Gómez-Lozano N et al (2005) The silent KIR3DP1 gene (CD158c) is transcribed and might encode a secreted receptor in a minority of humans, in whom the KIR3DP1, KIR2DL4 and KIR3DL1/KIR3DS1 genes are duplicated. Eur J Immunol 35:16–24PubMedCrossRefGoogle Scholar
  4. 4.
    Ordonez D et al (2008) Duplication, mutation and recombination of the human orphan gene KIR2DS3 contribute to the diversity of KIR haplotypes. Genes Immun 9:431–437PubMedCrossRefGoogle Scholar
  5. 5.
    Velardi A et al (2009) Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 21:525–530PubMedCrossRefGoogle Scholar
  6. 6.
    Cooley S et al (2010) Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116:2411–2419PubMedCrossRefGoogle Scholar
  7. 7.
    Uhrberg M et al (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7:753–763PubMedCrossRefGoogle Scholar
  8. 8.
    Vilches C et al (2007) Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments. Tissue Antigens 70:415–422PubMedCrossRefGoogle Scholar
  9. 9.
    Gómez-Lozano N, Vilches C (2002) Genotyping of human killer-cell immunoglobulin-like receptor genes by polymerase chain reaction with sequence-specific primers: an update. Tissue Antigens 59:184–193PubMedCrossRefGoogle Scholar
  10. 10.
    Chainonthee W et al (2010) Improved KIR gene and HLA-C KIR ligand sequence-specific primer polymerase chain reaction genotyping using whole genome amplification. Tissue Antigens 76:135–143PubMedGoogle Scholar
  11. 11.
    Sun JY et al (2004) Development of a multiplex PCR-SSP method for Killer-cell immunoglobulin-like receptor genotyping. Tissue Antigens 64:462–468PubMedCrossRefGoogle Scholar
  12. 12.
    Ashouri E et al (2009) A novel duplex SSP-PCR typing method for KIR gene profiling. Tissue Antigens 74:62–67PubMedCrossRefGoogle Scholar
  13. 13.
    Kulkarni S, Martin MP, Carrington M (2010) KIR genotyping by multiplex PCR-SSP. Methods 612:365–375Google Scholar
  14. 14.
    Alves LG, Rajalingam R, Canavez F (2009) A novel real-time PCR method for KIR genotyping. Tissue Antigens 73:188–191PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson A et al (2006) An improved RT-PCR method for the detection of killer-cell immunoglobulin-like receptor (KIR) transcripts. Immunogenetics 58:865–872PubMedCrossRefGoogle Scholar
  16. 16.
    Crum KA et al (2000) Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue Antigens 56:313–326PubMedCrossRefGoogle Scholar
  17. 17.
    Halfpenny IA et al (2004) Investigation of killer cell immunoglobulin-like receptor gene diversity: IV. KIR3DL1/S1. Hum Immunol 65:602–612PubMedCrossRefGoogle Scholar
  18. 18.
    Nong T et al (2007) KIR genotyping by reverse sequence-specific oligonucleotide methodology. Tissue Antigens 69(suppl 1):92–95PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez A et al (2009) Killer cell immunoglobulin-like receptor allele discrimination by high-resolution melting. Hum Immunol 70:858–863PubMedCrossRefGoogle Scholar
  20. 20.
    Witt CS, Martin A, Christiansen FT (2000) Detection of KIR2DL4 alleles by sequencing and SSCP reveals a common allele with a shortened cytoplasmic tail. Tissue Antigens 56:248–257PubMedCrossRefGoogle Scholar
  21. 21.
    Houtchens KA et al (2007) High-throughput killer cell immunoglobulin-like receptor genotyping by MALDI-TOF mass spectrometry with discovery of novel alleles. Immunogenetics 59:525–537PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David Ordóñez
    • 1
  • Manuela Moraru
    • 1
  • Natalia Gómez-Lozano
    • 1
  • Elisa Cisneros
    • 1
  • Carlos Vilches
    • 1
  1. 1.Inmunogenética—HLAHospital Universitario Puerta de HierroMajadahondaSpain

Personalised recommendations