Modeling miRNA Regulation in Cancer Signaling Systems: miR-34a Regulation of the p53/Sirt1 Signaling Module

  • Xin Lai
  • Olaf WolkenhauerEmail author
  • Julio VeraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 880)


MicroRNAs (miRNAs) are a family of small regulatory RNAs whose function is to regulate the activity and stability of specific messenger RNA targets through posttranscriptional regulatory mechanisms. Most of the times signaling systems involving miRNA modulation are not linear pathways in which a certain transcription factor activate the expression of miRNAs that posttranscriptionally represses targeting proteins, but complex regulatory structures involving a variety of feedback-loop architectures.

In this book chapter, we define, discuss, and apply a Systems Biology approach to investigate dynamical features of miRNA regulation, based on the integration of experimental evidences, hypotheses, and quantitative data through mathematical modeling. We further illustrate the approach using as case study the signaling module composed by the proteins p53, Sirt1, and the regulatory miRNA miR-34a. The model was used not only to investigate different possible designs of the silencing mechanism exerted by miR-34a on Sirt1 but also to simulate the dynamics of the system under conditions of (pathological) deregulation of its compounds.

Key words

Systems biology p53 miR-34a Sirt1 DBC1 ODE model Silencing posttranscriptional regulation Mathematical modeling Power-law model 



J.V. and X.L. are funded by the German Federal Ministry of Education and Research (BMBF) as part of the project CALSYS-FORSYS under contract 0315264 ( O.W. was supported by the Helmholtz Foundation as part of the Systems Biology Network.


  1. 1.
    Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708PubMedCrossRefGoogle Scholar
  2. 2.
    Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A 105:19678–19683PubMedCrossRefGoogle Scholar
  3. 3.
    Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823–828PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W (2008) Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587–590PubMedCrossRefGoogle Scholar
  5. 5.
    Bueno MJ, Pérez de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7:3143–3148PubMedCrossRefGoogle Scholar
  6. 6.
    Khanin R, Vinciotti V (2008) Computational modeling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15:305–316PubMedCrossRefGoogle Scholar
  7. 7.
    Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491PubMedCrossRefGoogle Scholar
  8. 8.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114PubMedCrossRefGoogle Scholar
  9. 9.
    Seitz H (2009) Redefining microRNA targets. Curr Biol 19:870–873PubMedCrossRefGoogle Scholar
  10. 10.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033PubMedCrossRefGoogle Scholar
  11. 11.
    Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18:549–557PubMedCrossRefGoogle Scholar
  12. 12.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  14. 14.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  15. 15.
    Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070PubMedCrossRefGoogle Scholar
  16. 16.
    Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131PubMedCrossRefGoogle Scholar
  17. 17.
    Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y, Solomon H, Goldstein I, Madar S, Goldfinger N, Børresen-Dale A-L, Ginsberg D, Harris CC, Pilpel Y, Oren M, Rotter V (2008) p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4:229PubMedCrossRefGoogle Scholar
  18. 18.
    Vera J, Wolkenhauer O (2008) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415PubMedCrossRefGoogle Scholar
  19. 19.
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412PubMedCrossRefGoogle Scholar
  20. 20.
    Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484PubMedCrossRefGoogle Scholar
  21. 21.
    Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752PubMedCrossRefGoogle Scholar
  22. 22.
    Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426PubMedCrossRefGoogle Scholar
  23. 23.
    Kim E-J, Kho J-H, Kang M-R, Um S-J (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28:277–290PubMedCrossRefGoogle Scholar
  24. 24.
    Balsa-Canto E, Alonso AA, Banga JR (2008) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2:163–172PubMedCrossRefGoogle Scholar
  25. 25.
    Banga JR, Balsa-Canto E (2008) Parameter estimation and optimal experimental design. Essays Biochem 45:195–209PubMedCrossRefGoogle Scholar
  26. 26.
    Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541PubMedCrossRefGoogle Scholar
  27. 27.
    Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626PubMedCrossRefGoogle Scholar
  28. 28.
    Savageau MA (1998) Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. BioSystems 47:9–36PubMedCrossRefGoogle Scholar
  29. 29.
    Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO, Hannun YA (2005) Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Nature 433:425–430PubMedCrossRefGoogle Scholar
  30. 30.
    Domijan M, Kirkilionis M (2009) Bistability and oscillations in chemical reaction networks. J Math Biol 59:467–501PubMedCrossRefGoogle Scholar
  31. 31.
    Vera J, Bachmann J, Pfeifer AC, Becker V, Hormiga JA, Darias NVT, Timmer J, Klingmüller U, Wolkenhauer O (2008) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38PubMedCrossRefGoogle Scholar
  32. 32.
    Vera J, Schultz J, Ibrahim S, Raatz Y, Wolkenhauer O, Kunz M (2010) Dynamical effects of epigenetic silencing of 14-3-3sigma expression. Mol Biosyst 6:264–273PubMedCrossRefGoogle Scholar
  33. 33.
    Atkinson MR, Savageau MA, Myers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607PubMedCrossRefGoogle Scholar
  34. 34.
    Ford J, Ahmed S, Allison S, Jiang M, Milner J (2008) JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle 7:3091–3097PubMedCrossRefGoogle Scholar
  35. 35.
    Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515PubMedCrossRefGoogle Scholar
  37. 37.
    Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772PubMedCrossRefGoogle Scholar
  38. 38.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159PubMedCrossRefGoogle Scholar
  39. 39.
    Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8:712–715PubMedCrossRefGoogle Scholar
  40. 40.
    Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008) Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 377:114–119PubMedCrossRefGoogle Scholar
  41. 41.
    Kato M, Paranjape T, Müller RU, Ullrich R, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A, Weidhaas JB, Slack FJ (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28:2419–2424PubMedCrossRefGoogle Scholar
  42. 42.
    Cha EJ, Noh SJ, Kwon KS, Kim CY, Park B-H, Park HS, Lee H, Chung MJ, Kang MJ, Lee DG, Moon WS, Jang KY (2009) Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res 15:4453–4459PubMedCrossRefGoogle Scholar
  43. 43.
    Kim J-E, Chen J, Lou Z (2008) DBC1 is a negative regulator of SIRT1. Nature 451:583–586PubMedCrossRefGoogle Scholar
  44. 44.
    Kwon H-S, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33:517–525PubMedCrossRefGoogle Scholar
  45. 45.
    Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J (2009) Inhibition of SUV39H1 methyltransferase activity by DBC1. J Biol Chem 284:10361–10366PubMedCrossRefGoogle Scholar
  46. 46.
    Ramalingam S, Honkanen P, Young L, Shimura T, Austin J, Steeg PS, Nishizuka S (2007) Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays. Cancer Res 67:6247–6252PubMedCrossRefGoogle Scholar
  47. 47.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  48. 48.
    Nikolov S, Vera J, Schmitz U, Wolkenhauer O (2011) A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci 130:55–69PubMedCrossRefGoogle Scholar
  49. 49.
    Vera J, Nikolov S, Lai X, Singh A, Wolkenhauer O (2011) A model-based investigation of the transcriptional activity of p53 and its feedback loop regulation via 14-3-3sigma. IET Syst Biol 5:293–307Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Systems Biology and Bioinformatics Group, Department of Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations