Skip to main content

Optical Recording of Visually Evoked Activity in the Drosophila Central Nervous System

  • Protocol
  • First Online:
The Making and Un-Making of Neuronal Circuits in Drosophila

Part of the book series: Neuromethods ((NM,volume 69))

  • 913 Accesses

Abstract

Drosophila has become a powerful experimental animal for the analysis of neuronal circuits and computations underlying innate behavior. In Drosophila, perturbational genetics is currently combined with the direct recording of neural activity in the CNS and eventually the quantitative analysis of behavior. Any deviation of the recorded response from the normal response is indicative of the functional role of the manipulated neurons and mechanisms in a specific computation or behavior. In these experiments, strong correlation is established by directly recording the membrane potential with electrodes (whole cell recording from the soma) or by optical recording changes in the concentration of intracellular calcium. In addition to recordings from the soma, optical measurements provide access to subcellular compartments as well as large ensembles of visual interneurons. Furthermore, optical recordings are not limited by the small size of the cell body, and neurons located deep inside the brain can be analyzed by using two-photon laser scanning microscopy (2PLSM). The latter aspect is of particular importance, as studying vision in flies requires that the large compound eyes covering almost the entire head of the fly remain fully intact. However, optical imaging of sensory processing in the fly visual system comes along with inherent difficulties of the approach: Fluorescence excitation causes blinding of the fly and photons from the visual stimulus enter the detection pathway and corrupt the recorded signals. In this chapter, I describe a method and guidelines suitable to bypass these problems. Genetic targeting of a population of visual interneurons is used to express a genetically encoded fluorescent indicator for intracellular calcium (GECI). The GECI molecules are expressed in the soma as well as all subcellular compartments. Thus, the requirement of dye application is overcome, and ultimately, a functionally homogeneous population of neurons can be analyzed with high spatial resolution. Fluorescence of the GECI is excited and recorded using in vivo 2PLSM that helps to prevent direct excitation of photoreceptors by laser light. Optical recordings are performed during visual stimulation and sensory processing of the fly. By separating fluorescence recording and visual stimulus presentation in time, even most subtle changes in GECI fluorescence are captured, while the visual stimulus is excluded from the recorded fluorescence signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clifford CW, Ibbotson MR (2002) Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 68:409–437

    Article  PubMed  CAS  Google Scholar 

  2. Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  PubMed  CAS  Google Scholar 

  3. Hotta Y, Benzer S (1969) Abnormal electroretinograms in visual mutants of Drosophila. Nature 222:354–356

    Article  PubMed  CAS  Google Scholar 

  4. Hardie RC (1991) Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci 11:3079–3095

    PubMed  CAS  Google Scholar 

  5. Hardie RC (1991) Whole-cell recordings of the light-induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc R Soc Lond B 245:203–210

    Article  Google Scholar 

  6. Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Article  PubMed  CAS  Google Scholar 

  7. Kirschfeld K (1973) Das neuronale Superpositionsauge. Fortschr Zool 21:228–257

    Google Scholar 

  8. Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305:232–263

    Article  PubMed  CAS  Google Scholar 

  9. Meinertzhagen IA, Sorra KE (2001) Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 131:53–69

    Article  PubMed  CAS  Google Scholar 

  10. Gengs C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL (2002) The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 277:42113–42120

    Article  PubMed  CAS  Google Scholar 

  11. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol 117:127–162

    Article  Google Scholar 

  12. Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M (2007) Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56:155–170

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi S, Wolf R, Desplan C, Heisenberg M (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci U S A 105:4910–4915

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci U S A 107:5634–5639

    Article  PubMed  CAS  Google Scholar 

  15. Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513

    Article  PubMed  Google Scholar 

  16. Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong S-T, Wang JW, Odenwald WF, White BH, Meinertzhagen IA, Lee C-H (2008) The neural substrate of spectral preference in Drosophila. Neuron 60:328–342

    Article  PubMed  CAS  Google Scholar 

  17. Katsov AY, Clandinin TR (2008) Motion processing streams in Drosophila are behaviorally specialized. Neuron 59:322–335

    Article  PubMed  CAS  Google Scholar 

  18. Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:1–7

    Article  Google Scholar 

  19. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF pathways in Drosophila motion vision. Nature 468:300–304

    Article  PubMed  CAS  Google Scholar 

  20. Reiff DF, Plett J, Mank M, Griesbeck O, Borst A (2010) Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat Neurosci 13:973–978

    Article  PubMed  CAS  Google Scholar 

  21. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399

    Article  PubMed  CAS  Google Scholar 

  22. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 16:1470–1475

    Article  Google Scholar 

  23. Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657

    Article  PubMed  CAS  Google Scholar 

  24. Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540

    Article  PubMed  CAS  Google Scholar 

  25. Hassenstein B, Reichardt W (1956) Systemthe­oretische Analyse der Zeit, Reihenfolgen und Vorzeichenauswertung Bei der Bewegung­sperzeption des Russelkafers Chlorophanus. Zeitschrift fur Naturforschung 11:513–524

    Google Scholar 

  26. Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. Wiley, New York, pp 303–317

    Google Scholar 

  27. Götz KG (1964) Optomotorische Untersuc­hungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Article  PubMed  Google Scholar 

  28. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A (2011) Internal structure of the fly elementary motion detector. Neuron 70:1155–1164

    Article  PubMed  CAS  Google Scholar 

  29. Yuste R (2011) Imaging—a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  30. Zhang B, Freeman MR, Waddell S (2011) Drosophila neurobiology—a laboratory handbook, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370

    Article  PubMed  CAS  Google Scholar 

  32. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  33. Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc Natl Acad Sci U S A 101:16333–16338

    Article  PubMed  CAS  Google Scholar 

  34. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hubener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  35. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  36. Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral neuroscience. J Neurosci Methods 167:127–139

    Article  PubMed  Google Scholar 

  37. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  38. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709

    Article  PubMed  CAS  Google Scholar 

  39. Borst A, Abarbanel HD (2007) Relating a calcium indicator signal to the unperturbed calcium concentration time-course. Theor Biol Med Model 4:7

    Article  PubMed  Google Scholar 

  40. Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:l5

    Article  Google Scholar 

  41. Pologruto TA, Yasuda R, Svoboda K (2004) Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J Neurosci 24:9572–9579

    Article  PubMed  CAS  Google Scholar 

  42. Hendel T, Mank M, Schnell B, Griesbeck O, Borst A, Reiff DF (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk F. Reiff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reiff, D.F. (2012). Optical Recording of Visually Evoked Activity in the Drosophila Central Nervous System. In: Hassan, B. (eds) The Making and Un-Making of Neuronal Circuits in Drosophila. Neuromethods, vol 69. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-830-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-830-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-829-0

  • Online ISBN: 978-1-61779-830-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics