Skip to main content

Development of Constraint-Based System-Level Models of Microbial Metabolism

  • Protocol
  • First Online:
Book cover Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

  • 3768 Accesses

Abstract

Genome-scale models of metabolism are valuable tools for using genomic information to predict microbial phenotypes. System-level mathematical models of metabolic networks have been developed for a number of microbes and have been used to gain new insights into the biochemical conversions that occur within organisms and permit their survival and proliferation. Utilizing these models, computational biologists can (1) examine network structures, (2) predict metabolic capabilities and resolve unexplained experimental observations, (3) generate and test new hypotheses, (4) assess the nutritional requirements of the organism and approximate its environmental niche, (5) identify missing enzymatic functions in the annotated genome, and (6) engineer desired metabolic capabilities in model organisms. This chapter details the protocol for developing genome-scale models of metabolism in microbes as well as tips for accelerating the model building process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253

    Article  PubMed  CAS  Google Scholar 

  2. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    Article  PubMed  Google Scholar 

  3. Thiele I, Vo TD, Price ND, Palsson BO (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187:5818–5830

    Article  PubMed  CAS  Google Scholar 

  4. Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed  Google Scholar 

  5. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803

    Article  PubMed  CAS  Google Scholar 

  6. Becker SA, Palsson BO (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5:8

    Article  PubMed  Google Scholar 

  7. Navid A, Almaas E (2009) Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001. Mol Biosyst 5:368–375

    Article  PubMed  CAS  Google Scholar 

  8. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  PubMed  CAS  Google Scholar 

  9. Almaas E (2007) Optimal flux patterns in cellular metabolic networks. Chaos 17:026107

    Article  PubMed  Google Scholar 

  10. Almaas E, Oltvai ZN, Barabasi AL (2005) The activity reaction core and plasticity of metabolic networks. PLoS Comput Biol 1:e68

    Article  PubMed  Google Scholar 

  11. Gagneur J, Jackson DB, Casari G (2003) Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19:1027–1034

    Article  PubMed  CAS  Google Scholar 

  12. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  PubMed  CAS  Google Scholar 

  13. Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38:993–998

    Article  PubMed  CAS  Google Scholar 

  14. Jamshidi N, Palsson BO (2006) Systems biology of SNPs. Mol Syst Biol 2:38

    Article  PubMed  Google Scholar 

  15. Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  PubMed  CAS  Google Scholar 

  16. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7:130–141

    Article  PubMed  CAS  Google Scholar 

  17. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375

    Article  PubMed  CAS  Google Scholar 

  18. Pal C, Papp B, Lercher MJ (2005) Horizontal gene transfer depends on gene content of the host. Bioinformatics 21(suppl 2):ii222–ii223

    Article  PubMed  CAS  Google Scholar 

  19. Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440:667–670

    Article  PubMed  CAS  Google Scholar 

  20. Pharkya P, Burgard AP, Maranas CD (2003) Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 84:887–899

    Article  PubMed  CAS  Google Scholar 

  21. Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657

    Article  PubMed  CAS  Google Scholar 

  22. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14:2367–2376

    Article  PubMed  CAS  Google Scholar 

  23. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91:643–648

    Article  PubMed  CAS  Google Scholar 

  24. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  PubMed  CAS  Google Scholar 

  25. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  Google Scholar 

  26. Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B (2006) Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 7:296

    Article  PubMed  Google Scholar 

  27. DeJongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8:139

    Article  PubMed  Google Scholar 

  28. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  PubMed  CAS  Google Scholar 

  29. Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  30. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  PubMed  CAS  Google Scholar 

  31. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  Google Scholar 

  32. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590

    Article  PubMed  Google Scholar 

  33. Guldener U, Munsterkotter M, Kastenmuller G, Strack N, van Helden J, Lemer C, Richelles J, Wodak SJ, Garcia-Martinez J, Perez-Ortin JE, Michael H, Kaps A, Talla E, Dujon B, Andre B, Souciet JL, De Montigny J, Bon E, Gaillardin C, Mewes HW (2005) CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Res 33:D364–D368

    Article  PubMed  CAS  Google Scholar 

  34. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38:D382–D390

    Article  PubMed  CAS  Google Scholar 

  35. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 35:D26–D31

    Article  PubMed  CAS  Google Scholar 

  36. Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucleic Acids Res 29:123–125

    Article  PubMed  CAS  Google Scholar 

  37. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79

    Article  PubMed  CAS  Google Scholar 

  38. Lee DY, Yun H, Park S, Lee SY (2003) MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19:2144–2146

    Article  PubMed  CAS  Google Scholar 

  39. Lee SY, Lee DY, Hong SH, Kim TY, Yun H, Oh YG, Park S (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inform 14:23–33

    PubMed  CAS  Google Scholar 

  40. Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhutter HG (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12:28

    Article  PubMed  Google Scholar 

  41. Forth T, McConkey GA, Westhead DR (2010) MetNetMaker: a free and open-source tool for the creation of novel metabolic networks in SBML format. Bioinformatics 26:2352

    Article  PubMed  CAS  Google Scholar 

  42. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  PubMed  CAS  Google Scholar 

  43. Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 27:54–56

    Article  PubMed  CAS  Google Scholar 

  44. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37:D588

    Article  PubMed  CAS  Google Scholar 

  45. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27

    Article  PubMed  CAS  Google Scholar 

  46. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277

    Article  PubMed  CAS  Google Scholar 

  47. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36:D623–D631

    Article  PubMed  CAS  Google Scholar 

  48. Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32:D284

    Article  PubMed  CAS  Google Scholar 

  49. Ren Q, Chen K, Paulsen IT (2006) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274

    Article  PubMed  Google Scholar 

  50. Alberty RA (1998) Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions. Arch Biochem Biophys 358:25–39

    Article  PubMed  CAS  Google Scholar 

  51. Alberty RA (1998) Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Arch Biochem Biophys 353:116–130

    Article  PubMed  CAS  Google Scholar 

  52. Kummel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7:512

    Article  PubMed  Google Scholar 

  53. Mavrovouniotis ML (1990) Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082

    Article  PubMed  CAS  Google Scholar 

  54. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95:1487–1499

    Article  PubMed  CAS  Google Scholar 

  55. Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90:1453–1461

    Article  PubMed  CAS  Google Scholar 

  56. Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka M, Okuno Y, Yamada T, Goto S, Uemura S, Kanehisa M (2003) Extraction of a thermodynamic property for biochemical reactions in the metabolic pathway. Genome Inform 14:370–371

    Google Scholar 

  58. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527

    Article  PubMed  CAS  Google Scholar 

  59. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731

    PubMed  CAS  Google Scholar 

  60. Neidhardt FC, Curtiss R III, Ingraham J, Lin E, Low K, Magasanik B, Reznikoff W, Riley M, Schaechter M, Umbarger H (1996) Escherichia coli and Salmonella: cellular and molecular biology, vol 2327. American Society for Microbiology, Washington, DC

    Google Scholar 

  61. Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60

    Article  PubMed  CAS  Google Scholar 

  62. Dumontier M, Michalickova K, Hogue C (2002) Species-specific protein sequence and fold optimizations. BMC Bioinformatics 3:39

    Article  PubMed  Google Scholar 

  63. Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13:344–349

    Article  PubMed  CAS  Google Scholar 

  64. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EEK, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28:362–375

    Article  PubMed  CAS  Google Scholar 

  65. Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem 325:308–316

    Article  PubMed  CAS  Google Scholar 

  66. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed  Google Scholar 

  67. Stewart BJ, Navid A, Turteltaub KW, Bench G (2010) Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry. Anal Chem 82:9812–9817

    Article  PubMed  CAS  Google Scholar 

  68. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76

    Article  PubMed  Google Scholar 

  69. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  Google Scholar 

  70. Tian W, Arakaki AK, Skolnick J (2004) EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Res 32:6226

    Article  PubMed  CAS  Google Scholar 

  71. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897

    Article  PubMed  CAS  Google Scholar 

  72. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  PubMed  CAS  Google Scholar 

  73. Milne CB, Kim PJ, Eddy JA, Price ND (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 4:1653–1670

    Article  PubMed  CAS  Google Scholar 

  74. Liu L, Agren R, Bordel S, Nielsen J (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584:2556–2564

    Article  PubMed  CAS  Google Scholar 

  75. Knorr AL, Jain R, Srivastava R (2007) Bayesian-based selection of metabolic objective functions. Bioinformatics 23:351–357

    Article  PubMed  CAS  Google Scholar 

  76. Holzhutter HG (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271:2905–2922

    Article  PubMed  Google Scholar 

  77. Oliveira AP, Nielsen J, Förster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39

    Article  PubMed  Google Scholar 

  78. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496

    Article  PubMed  CAS  Google Scholar 

  79. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD (2005) Querying and computing with BioCyc databases. Bioinformatics 21:3454–3455

    Article  PubMed  CAS  Google Scholar 

  80. Maglott D, Ostell J, Pruitt KD, Tatusova T (2011) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. LLNL-BOOK-491430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Navid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Navid, A. (2012). Development of Constraint-Based System-Level Models of Microbial Metabolism. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics