Skip to main content

Improved Genetic Transformation of Cork Oak (Quercus suber L.)

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 877))

  • 4515 Accesses

Abstract

An Agrobacterium-mediated transformation system for selected mature Quercus suber L. trees has been established. Leaf-derived somatic embryos in an early stage of development are inoculated with an AGL1 strain harboring a kanamycin-selectable plasmid carrying the gene of interest. The transformed embryos are induced to germinate and the plantlets transferred to soil.

This protocol, from adult cork oak to transformed plantlet, can be completed in about one and a half years. Transformation efficiencies (i.e., percentage of inoculated explants that yield independent transgenic embryogenic lines) vary depending on the cork oak genotype, reaching up to 43%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest Genetic Resources Working Paper FGR/59E. Forest Resources Development Service, Forest Resources Division. Rome, Italy

    Google Scholar 

  2. Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166

    Article  PubMed  CAS  Google Scholar 

  3. Merkle SA et al (2007) Restoration of threatened species: a noble cause for transgenic trees. Tree Genet Genomes 3:111–118

    Article  Google Scholar 

  4. Álvarez R et al (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    Article  PubMed  Google Scholar 

  5. Sánchez N et al (2005) Agrobacterium-mediated transformation of cork oak (Quercus suber L.) somatic embryos. New For 29:169–176

    Article  Google Scholar 

  6. Álvarez R, Ordás RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell Tiss Organ Cult 91:45–52

    Article  Google Scholar 

  7. Carraway DT et al (1994) Somatic embryogenesis and gene transfer in American chestnut. J Am Chestnut Found 8:29–33

    Google Scholar 

  8. Fernando DD et al (2006) In vitro germination and transient GFP expression of American chestnut (Castanea dentata) pollen. Plant Cell Rep 25:450–456

    Article  PubMed  CAS  Google Scholar 

  9. Polin LD et al (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tiss Organ Cult 84:69–79

    Article  CAS  Google Scholar 

  10. Rothrock RE et al (2007) Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell Tiss Organ Cult 88:93–99

    Article  Google Scholar 

  11. Andrade GM et al (2009) Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation. Plant Cell Rep 28:1385–1397

    Article  PubMed  CAS  Google Scholar 

  12. Seabra R, Pais MS (1998) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  CAS  Google Scholar 

  13. Seabra R, Pais MS (1999) Genetic transformation of European chestnut (Castanea sativa Mill.) with genes of interest. Acta Hort (ISHS) 494:407–414

    Google Scholar 

  14. Corredoira E et al (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    Article  PubMed  CAS  Google Scholar 

  15. Corredoira E et al (2006) Genetic transformation of Castanea sativa Mill. by Agrobacterium tumefaciens. Acta Hort (ISHS) 693:387–394

    Google Scholar 

  16. Corredoira E et al (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tiss Organ Cult 91:281–288

    Article  CAS  Google Scholar 

  17. Caro LA et al (2003) Agrobacterium rhizogenes vs auxinic induction for in vitro rhizogenesis of Prosopis chilensis and Nothofagus alpina. Biocell 27:311–318

    PubMed  CAS  Google Scholar 

  18. Roest S et al (1991) Agrobacterium-mediated transformation of oak (Quercus robur L.). Acta Hort (ISHS) 289:259–260

    Google Scholar 

  19. Wilhelm E et al (1996) Plantlet regeneration via somatic embryogenesis and investigations on Agrobacterium tumefaciens mediated transformation of oak (Quercus robur). In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  20. Vidal N et al (2010) Regeneration of transgenic plants by Agrobacterium-mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Rep 29:1411–1422

    Article  PubMed  CAS  Google Scholar 

  21. Aronson J et al (2009) Cork oak woodlands on the edge: ecology, adaptive management, and restoration. Island, Washington, DC

    Google Scholar 

  22. Paleo UF (2010) The dehesa/montado landscape. In: Bélair C, Ichikawa K, Wong BYL, Mulongoy KJ (eds). Secretariat of the Convention on Biological Diversity, Montreal. Technical Series No 52

    Google Scholar 

  23. Neumann KH (2006) Some studies on somatic embryogenesis: a tool in plant biotechnology. In: Sopory SK, Roy S, Kumar A (eds) Plant biotechnology. IK International Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  24. Rose RJ et al (2010) Developmental biology of somatic embryogenesis. In: Pua EC, Davey MR (eds) Plant developmental biology - Biotechnological perspectives. Springer, Berlin

    Google Scholar 

  25. Bueno MA et al (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85:30–34

    Article  Google Scholar 

  26. Manzanera J et al (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42:90–93

    Google Scholar 

  27. Fernández-Guijarro B et al (1994) Somatic embryogenesis in Quercus suber L. In: Pardos JA, Ahuja MR, Elena-Rossello R (eds) Investigación Agraria, Sistemas y Recursos Forestales. INIA, Madrid

    Google Scholar 

  28. Fernández-Guijarro B et al (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tiss Organ Cult 41:99–106

    Article  Google Scholar 

  29. Hernández I et al (2001) Cloning mature cork oak (Quercus suber L.) trees by somatic embryogenesis. Melhoramento 37:50–57

    Google Scholar 

  30. Hernández I et al (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  Google Scholar 

  31. Hernández I et al (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770

    PubMed  Google Scholar 

  32. Hernández I et al (2009) Growth data from a field trial of Quercus suber plants regenerated from selected trees and from their half-sib progenies by somatic embryogenesis. Acta Hort (ISHS) 812:493–498

    Google Scholar 

  33. Loureiro J et al (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822

    Article  PubMed  CAS  Google Scholar 

  34. Lopes T et al (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152

    Article  PubMed  CAS  Google Scholar 

  35. Valladares S et al (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886

    Article  PubMed  CAS  Google Scholar 

  36. Fernandes P et al (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  PubMed  CAS  Google Scholar 

  37. Pintos B et al (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164:1595–1604

    Article  PubMed  CAS  Google Scholar 

  38. Pintos B et al (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tiss Organ Cult 95:217–225

    Article  Google Scholar 

  39. Álvarez R et al (2007) Cork oak trees (Quercus suber L.). In: Wang K (ed) Agrobacterium protocols, Volume II. Humana, Totowa

    Google Scholar 

  40. Álvarez R et al (2009) Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol Lett 31:1477–1483

    Article  PubMed  Google Scholar 

  41. Pintos B et al (2010) Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture. Ann For Sci 67:205

    Article  Google Scholar 

  42. Lazo GR et al (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  44. Gamborg OL (1966) Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Biochem Cell Biol 44:791–799

    Article  CAS  Google Scholar 

  45. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  46. An G et al (1988) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  47. Sommer HE et al (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136:196–200

    Article  Google Scholar 

  48. Toribio M et al (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht

    Google Scholar 

  49. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  50. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  51. Humara J et al (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    CAS  Google Scholar 

  52. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  53. Berendzen K et al (2005) A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1:4

    Article  PubMed  Google Scholar 

  54. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol R 67:16–37

    Article  CAS  Google Scholar 

  55. Álvarez R et al (2007) Agrobacterium protocols volume 2 Cork oak trees (Quercus suber L.). Springer, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Álvarez-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Álvarez-Fernández, R., Ordás, RJ. (2012). Improved Genetic Transformation of Cork Oak (Quercus suber L.). In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 877. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-818-4_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-817-7

  • Online ISBN: 978-1-61779-818-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics