Advertisement

Molecular Organization of Polyene Antibiotic Amphotericin B Studied by Means of Fluorescence Technique

  • Wieslaw I. GruszeckiEmail author
  • Rafal Luchowski
  • Piotr Wasko
  • Zygmunt Gryczynski
  • Ignacy Gryczynski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 875)

Abstract

Amphotericin B (AmB) is a polyene antibiotic used to treat deep-seated mycoses. Both the pharmaceutical and toxic activities of AmB depend on the molecular organization of the drug. The fluorescence of AmB has proven to be a powerful technique of studying the drug’s association state. In particular, fluorescence lifetime appeared to be sensitive to the formation of AmB dimers and aggregated structures. This paper addresses the application of the fluorescence technique in the study of the molecular organization of AmB, and perspectives on future application of this approach are addressed briefly.

Key words

Amphotericin B Polyene antibiotic Fluorescence Fluorescence lifetime FLIM 

References

  1. 1.
    Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97:2405–2425CrossRefPubMedGoogle Scholar
  2. 2.
    Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26:223–227CrossRefPubMedGoogle Scholar
  3. 3.
    Bolard J, Legrand P, Heitz F, Cybulska B (1991) One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry 30:5707–5715CrossRefPubMedGoogle Scholar
  4. 4.
    Bonilla-Marin M, Moreno-Bello M, Ortega-Blake I (1991) A microscopic electrostatic model for the amphotericin B channel. Biochim Biophys Acta 1061:65–77CrossRefPubMedGoogle Scholar
  5. 5.
    De Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interaction in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complex. Biochim Biophys Acta 339:57–70CrossRefPubMedGoogle Scholar
  6. 6.
    Baginski M, Resat H, Borowski E (2002) Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels. Biochim Biophys Acta 1567:63–78CrossRefPubMedGoogle Scholar
  7. 7.
    Barwicz J, Gruszecki WI, Gruda I (1993) Spontaneous organization of amphotericin B in aqueous medium. J Colloid Interf Sci 158:71–76CrossRefGoogle Scholar
  8. 8.
    Mazerski J, Borowski E (1996) Molecular dynamics of amphotericin B. II. Dimer in water. Biophys Chem 57:205–217CrossRefPubMedGoogle Scholar
  9. 9.
    Gagos M, Gruszecki WI (2008) Organization of polyene antibiotic amphotericin B at the argon-water interface. Biophys Chem 137:110–115CrossRefPubMedGoogle Scholar
  10. 10.
    Gagos M, Gabrielska J, Dalla SM, Gruszecki WI (2005) Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol Membr Biol 22:433–442CrossRefPubMedGoogle Scholar
  11. 11.
    Gagos M, Herec M, Arczewska M, Czernel G, Dalla SM, Gruszecki WI (2008) Anomalously high aggregation level of the polyene antibiotic amphotericin B in acidic medium: implications for the biological action. Biophys Chem 136:44–49CrossRefPubMedGoogle Scholar
  12. 12.
    Gruszecki WI, Gagos M, Herec M, Kernen P (2003) Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell Mol Biol Lett 8:161–170PubMedGoogle Scholar
  13. 13.
    Gruszecki WI, Gagos M, Herec M (2003) Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J Photochem Photobiol B 69:49–57CrossRefPubMedGoogle Scholar
  14. 14.
    Gruszecki WI, Herec M (2003) Dimers of polyene antibiotic amphotericin B. J Photochem Photobiol B 72:103–105CrossRefGoogle Scholar
  15. 15.
    Stoodley R, Wasan KM, Bizzotto D (2007) Fluorescence of amphotericin B-deoxycholate (fungizone) monomers and aggregates and the effect of heat-treatment. Langmuir 23:8718–8725CrossRefPubMedGoogle Scholar
  16. 16.
    Gruszecki WI, Luchowski R, Gagos M et al (2009) Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophys Chem 143:95–101CrossRefPubMedGoogle Scholar
  17. 17.
    Herec M, Dziubinska H, Trebacz K, Morzycki JW, Gruszecki WI (2005) An effect of antibiotic amphotericin B on ion transport across model lipid membranes and tonoplast membranes. Biochem Pharmacol 70:668–675CrossRefPubMedGoogle Scholar
  18. 18.
    Gabrielska J, Gagos M, Gubernator J, Gruszecki WI (2006) Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett 580:2677–2685CrossRefPubMedGoogle Scholar
  19. 19.
    Herec M, Islamov A, Kuklin A, Gagos M, Gruszecki WI (2007) Effect of antibiotic amphotericin B on structural and dynamic properties of lipid membranes formed with egg yolk phosphatidylcholine. Chem Phys Lipids 147:78–86CrossRefPubMedGoogle Scholar
  20. 20.
    Bolard J, Cleary JD, Kramer RE (2009) Evidence that impurities contribute to the fluorescence of the polyene antibiotic amphotericin B. J Antimicrob Chemother 63:921–927CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wieslaw I. Gruszecki
    • 1
    Email author
  • Rafal Luchowski
    • 1
  • Piotr Wasko
    • 1
  • Zygmunt Gryczynski
    • 2
  • Ignacy Gryczynski
    • 2
  1. 1.Department of Biophysics, Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Center for Commercialization of Fluorescence TechnologiesUniversity of North Texas Health Science CenterFort WorthUSA

Personalised recommendations