Förster Resonance Energy Transfer and Trapping in Selected Systems: Analysis by Monte-Carlo Simulation

  • P. BojarskiEmail author
  • A. Synak
  • L. Kułak
  • S. Rangelowa-Jankowska
  • A. Kubicki
  • B. Grobelna
Part of the Methods in Molecular Biology book series (MIMB, volume 875)


Monte-Carlo simulation method is described and applied as an efficient tool to analyze experimental data in the presence of energy transfer in selected systems, where the use of analytical approaches is limited or even impossible. Several numerical and physical problems accompanying Monte-Carlo simulation are addressed. It is shown that the Monte-Carlo simulation enables to obtain orientation factor in partly ordered systems and other important energy transfer parameters unavailable directly from experiments. It is shown how Monte-Carlo simulation can predict some important features of energy transport like its directional character in ordered media.

Key words

Non-radiative energy transfer Homotransfer Trapping Aggregates Monte-Carlo simulations Time-resolved emission spectra Emission anisotropy Emission anisotropy decay Orientation factor Mean square displacement of excitation energy Directional energy transfer Uniaxially stretched polymer films. 



This paper has been supported by the grant: NR 15 0029/2009. S.R.J. has been supported by the European Social Fund and Foundation for Development of the University of Gdańsk.


  1. 1.
    Förster T (1967) Mechanisms of energy transfer. In: Florkin M, Stolz EH (eds) Comprehensive biochemistry. Elsevier, Amsterdam, 22:61–80Google Scholar
  2. 2.
    Bojarski C, Sienicki K (1990) Energy transfer and migration in fluorescent solution. In: Rabek JA (ed) Photophysics and photochemistry. CRC, Boca Raton, pp 1–57Google Scholar
  3. 3.
    Van der Meer BW, Coker Ill G, Chen SY (1994) Resonance energy transfer: theory and data. VCH Publishers (Now Wiley-VCH), Inc., New York, pp 1–49Google Scholar
  4. 4.
    Bojarski P, Kułak L, Kamińska A (2002) Nonradiative excitation energy transport and its analysis in concentrated systems. Asian J Spectrosc 5:145–163Google Scholar
  5. 5.
    Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252Google Scholar
  6. 6.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Kluwer/Plenum, New YorkCrossRefGoogle Scholar
  7. 7.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCHVerlag GmbH, pp 247–271Google Scholar
  8. 8.
    Ketskemety I, Dombi J, Horvai R, Hevesi J, Kozma L (1961) Experimentelle Prüfung des Wawilowschen Gesetzes im Falle Fluoresziender Lösungen. Acta Physica Chem 7:17–21Google Scholar
  9. 9.
    Kawski A, Piszczek G, Kukliński B, Nowosielski T (1994) Isomerization of diphenyl polyenes. Part VIII. Absorption and fluorescence properties of 1-phenyl-4-diphenylthiophosphinyl butadiene in poly(vinyl alcohol). Z Naturforsch 49a:824–828Google Scholar
  10. 10.
    Kubicki A (1989) A universal photon-counting measuring system for polarized spectroscopy. Exper Techn Phys 37:329–333Google Scholar
  11. 11.
    Bojarski P, Kawski A (1992) The influence of reverse energy transfer on emission anisotropy in two-component viscous solutions. J Fluoresc 2:133–139CrossRefPubMedGoogle Scholar
  12. 12.
    Jankowski D, Bojarski P, Kwiek P, Rangełowa-Jankowska S (2010) Chem Phys 373:238–242CrossRefGoogle Scholar
  13. 13.
    Synak A, Gondek G, Bojarski P, Kułak L, Kubicki A, Szabelski M, Kwiek P (2004) Fluorescence depolarization in the presence of excitation energy migration in partly ordered polymer films. Chem Phys Lett 399:114–119CrossRefGoogle Scholar
  14. 14.
    Kubicki A, Bojarski P, Grinberg M, Sadownik M, Kukliński B (2006) Time-resolved streak camera system with solid state laser and optical parametric generator in different spectroscopic applications. Optic Comm 263:275–280CrossRefGoogle Scholar
  15. 15.
    Bojarski C (1974) Nonradiative excitation energy transport and some concentration effects in fluorescent solution. Scientific Dissertations Technical University of Gdansk, 13Google Scholar
  16. 16.
    Benett RG (1964) Radiationless intermolecular energy transfer. V. Singlet-triplet transfer. J Chem Phys 41:3048–3050CrossRefGoogle Scholar
  17. 17.
    Hameka HF (1967) The triplet state. Cambridge University PressGoogle Scholar
  18. 18.
    Ermolaev WL, Bodunov EN, Schveschnikova EB, Szachverdov TA (1977) Nonradiative electronic excitation energy transfer. Nauka (in Russian)Google Scholar
  19. 19.
    Vassilev RF (1962) Secondary processes in chemiluminescent solutions. Nature 196:668–669CrossRefGoogle Scholar
  20. 20.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–851CrossRefGoogle Scholar
  21. 21.
    Bäckström HL, Sandros K (1958) The quenching of the long-lived fluorescence of biacetyl in solution. Acta Chem Scand 12:823–832CrossRefGoogle Scholar
  22. 22.
    Terenin AN, Ermolaev VL (1952) Sensibilized phosphorescence of organic molecules at low temperature. Intermolecular energy transfer from the excited triplet state. DAN SSSR (in Russian) 85: 547–550Google Scholar
  23. 23.
    Ermolaev WL, Antipenko BM, Schveschnikova JB, Tachin WS, Schaverdov TA (1970) Molecular photonics. Izd Lenigrad (in Russian)Google Scholar
  24. 24.
    Parker CA, Hatchard CG (1962) Delayed fluorescence from solutions of anthracene and phenanthrene. Proc R Soc Lond 269:574CrossRefGoogle Scholar
  25. 25.
    Förster T (1948) Intermolecular energy migration and fluorescence. Ann Physik 2:55–75CrossRefGoogle Scholar
  26. 26.
    Förster T (1966) Modern quantum chemistry. vol 3. Academic, New YorkGoogle Scholar
  27. 27.
    Steinberg IZ (1968) Nonradiative energy transfer in systems in which rotatory brownian motion is frozen. J Chem Phys 48:2411–2414CrossRefGoogle Scholar
  28. 28.
    Maksimow MZ, Rozman I (1962) On the energy transfer in rigid solutions. Opt Spectr 12:606–609Google Scholar
  29. 29.
    Dale RE, Eisinger J (1976) Intramolecular energy transfer and molecular conformation. Proc Natl Acad Sci USA 73:271–273CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bojarski C, Dudkiewicz J (1979) Orientation factor in concentration effects due to nonradiative energy transfer in luminescent systems. Chem Phys Lett 67:450–454CrossRefGoogle Scholar
  31. 31.
    Knoester J, Van Himbergen JE (1986) Theory of concentration depolarization in the presence of orientational correlations. J Chem Phys 84:2990–2998CrossRefGoogle Scholar
  32. 32.
    Bojarski P, Kułak L, Bojarski C, Kawski A (1995) Nonradiative excitation energy transport in one- component disordered systems. J Fluoresc 5:307–319CrossRefPubMedGoogle Scholar
  33. 33.
    Kułak L (2009) Hybrid Monte-Carlo simulations of fluorescence anisotropy decay in three-component donor–mediator–acceptor systems in the presence of energy transfer. Chem Phys Lett 467:435–438CrossRefGoogle Scholar
  34. 34.
    Bojarski P, Sadownik M, Rangełowa-Jankowska S, Kułak L, Dasiak K (2008) Unusual fluorescence anisotropy spectra of three-component donor–mediator–acceptor systems in uniaxially stretched polymer films in the presence of energy transfer. Chem Phys Lett 456:166–169CrossRefGoogle Scholar
  35. 35.
    Scully AD, Matsumoto A, Hirayama S (1991) A time-resolved fluorescence study of electronic excitation energy transport in concentrated dye solutions. Chem Phys 157:253–269CrossRefGoogle Scholar
  36. 36.
    Bojarski C, Kawski A (1959) Über die Bestimmung des kritischen Molekülabstandes bei der Konzentrationsdepolarisation der Fluoreszenz. Ann Phys 5:31–34CrossRefGoogle Scholar
  37. 37.
    Kusba J, Lakowicz JR (1994) Diffusion modulated energy transfer and quenching: analysis by numerical integration of the diffusion equation in the laplace space. Methods Enzymol 224:216–262CrossRefGoogle Scholar
  38. 38.
    Gryczynski ZI, Lakowicz JR (2005) Basics of fluorescence and FRET. In: Periasamy A, Day R (eds) Molecular imaging: fret microscopy and spectroscopy. Oxford, pp 21–55Google Scholar
  39. 39.
    Eriksen EL, Ore A (1967) On mathematico-physical models for self-depolarization of fluorescence. Phys Norv 2:159–171Google Scholar
  40. 40.
    Jablonski A (1970) Anisotropy of fluorescence of molecules excited by excitation transfer. Acta Phys Pol A38:453–458, Errata (1971) A39, 87Google Scholar
  41. 41.
    Bojarski C, Domsta J (1971) Theory of the influence of concentration on the luminescence of solid solutions. Acta Phys Acad Sci Hung 30:145–166CrossRefGoogle Scholar
  42. 42.
    Huber DL (1979) Fluorescence in the presence of traps. Phys Rev B 20:2307–2314CrossRefGoogle Scholar
  43. 43.
    Huber DL, Hamilton DS, Barnett D (1977) Time-dependent effects in fluorescent line narrowing. Phys Rev B 16:4642–4650CrossRefGoogle Scholar
  44. 44.
    Huber DL (1987) Transfer and trapping of optical excitation. In: Grassano UM, Terzi N (eds) Excited-state spectroscopy in solids. North-Holland, AmsterdamGoogle Scholar
  45. 45.
    Twardowski R, Kusba J, Bojarski C (1982) Donor fluorescence decay in solid solution. Chem Phys 64:239–248CrossRefGoogle Scholar
  46. 46.
    Twardowski R, Bojarski C (1985) Remarks on the theory of concentration depolarization of fluorescence. J Lumin 33:79–85CrossRefGoogle Scholar
  47. 47.
    Burstein AI (1985) Quantum yields of selective and non-selective luminescence in solid solutions. J Lumin 34:201–209CrossRefGoogle Scholar
  48. 48.
    Bojarski C (1984) Influence of the reversible energy transfer on the donor fluorescence quantum yield in donor-acceptor systems. Z Naturforsch 39:948–951Google Scholar
  49. 49.
    Twardowski R, Kusba J (1988) Reversible energy transfer and fluorescence decay in solid solutions. Z Naturforsch 43:627–632Google Scholar
  50. 50.
    Sienicki K, Winnik MA (1988) Donor-acceptor kinetics in the presence of energy migration. Forward and reverse energy transfer. Chem Phys 121:163–174CrossRefGoogle Scholar
  51. 51.
    Sienicki K, Mattice WL (1989) Forward and reverse energy transfer in the presence of energy migration and correlations. J Chem Phys 90:6187–6193CrossRefGoogle Scholar
  52. 52.
    Kulak L, Bojarski C (1992) Direct and reverse energy transport in systems of monomers and imperfect traps: Monte Carlo simulations. J Fluoresc 2:123–131CrossRefPubMedGoogle Scholar
  53. 53.
    Haan SW, Zwanzig R (1978) Forster migration of electronic excitation between randomly distributed molecules. J Chem Phys 68:1879–1884CrossRefGoogle Scholar
  54. 54.
    Gochanour CR, Andersen HC, Fayer MD (1979) Electronic excited state transport in solution. J Chem Phys 70:4254–4271CrossRefGoogle Scholar
  55. 55.
    Loring RF, Andersen HC, Fayer MD (1982) Electronic excited state transport and trapping in solution. J Chem Phys 76:2015–2027CrossRefGoogle Scholar
  56. 56.
    Kulak L, Bojarski C (1995) Forward and reverse electronic energy transport and trapping in solution. I. Theory; Forward and reverse electronic energy transport and trapping in solution. II. Numerical results and Monte Carlo simulations. Chem Phys 191:43–66, (1995) 191: 67–86CrossRefGoogle Scholar
  57. 57.
    Bojarski P, Kulak L (1997) Forward and reverse excitation energy transport in concentrated two-component systems. Chem Phys 220:323–336CrossRefGoogle Scholar
  58. 58.
    Rangelowa S, Kulak L, Gryczynski I, Sakar P, Bojarski P (2008) Fluorescence anisotropy decay in the presence of multistep energy migration and back transfer in disordered two-component systems. Chem Phys Lett 452:105–109CrossRefGoogle Scholar
  59. 59.
    Tanizaki Y (1959) Dichroism of dyes in stretched PVA sheet. Bull Chem Soc Jap 32:1362–1363, (1965) 38: 1798–1799CrossRefGoogle Scholar
  60. 60.
    Bojarski P, Synak A, Kulak L, Sadownik M (2003) Excitation energy migration in uniaxially oriented PVA films. Chem Phys Lett 375:547–552CrossRefGoogle Scholar
  61. 61.
    Kulak L (2008) Hybrid Monte-Carlo simulations of fluorescence anisotropy decay in disordered two-component systems in the presence of forward and back energy transfer. Chem Phys Lett 457:259–262CrossRefGoogle Scholar
  62. 62.
    Metropolis N, Rozenbluth A, Rozenbluth M, Teller M, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1093CrossRefGoogle Scholar
  63. 63.
    Bojarski P, Gryczynski I, Kulak L, Synak A, Barnett A (2006) Excitation energy migration between elongated fluorophores in uniaxially oriented polyvinyl alcohol films. Chem Phys Lett 431:94–99CrossRefGoogle Scholar
  64. 64.
    Michl J, Thulstrup EW (1986) Spectroscopy with polarized light. VCH, New YorkGoogle Scholar
  65. 65.
    Kawski A, Gryczynski Z (1986) On the determination of transition-moment directions from emission anisotropy measurements. Z Naturforsch 41a:1195–1199Google Scholar
  66. 66.
    Gryczynski Z, Kawski A (1987) Relation between the emission anisotropy and the dichroic ratio for solute alignment in stretched polimer films. Z Naturforsch 42a:1396–1398Google Scholar
  67. 67.
    Synak A, Bojarski P (2005) Transition moment directions of selected carbocyanines from emission anisotropy and linear dichroism measurements in uniaxially stretched polimer films. Chem Phys Lett 416:300–304CrossRefGoogle Scholar
  68. 68.
    Gryczynski I, Gryczynski Z, Wiczk W, Kusba J, Lakowicz R (1992) Effect of molecular ordering on distance distributions of flexible donor-acceptor pairs. SPIE 1640:622–631Google Scholar
  69. 69.
    Hasegawa M, Enomoto S, Hoshi T, Igarashi K, Yamazaki T, Nishimura Y, Speiser Y, Yamazaki I (2002) Intramolecular excitation energy transfer in bichromophoric compounds in stretched polymer films. J Phys Chem B 106:4925–4931CrossRefGoogle Scholar
  70. 70.
    Szabelski M, Bojarski P, Wiczk W, Gryczynski I (2007) Fluorescence resonance energy transfer in short linear peptides carrying 3-[2-(2-benzofuranyl)benzoxazol-5-yl]-alanine and 3-nitro-l-tyrosine molecules in poly(vinyl alcohol) film. Chem Phys Lett 442:418–423CrossRefGoogle Scholar
  71. 71.
    Bojarski P, Gryczynski I, Kulak L, Synak A, Bharill S, Rangelowa S, Szabelski M (2007) Multistep energy migration between 3,3’-diethyl-9-methylthiacarbocyanine iodide monomers in uniaxially oriented polymer films. Chem Phys Lett 439:332–336CrossRefGoogle Scholar
  72. 72.
    Bojarski P, Synak A, Kulak L, Baszanowska E, Kubicki A, Grajek H, Szabelski M (2006) Excitation energy migration in uniaxially oriented polymer films: a comparison between strongly and weakly organized systems. Chem Phys Lett 421:91–95CrossRefGoogle Scholar
  73. 73.
    Heelis PF (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev 11:15–39CrossRefGoogle Scholar
  74. 74.
    Ninnemann H (1980) Blue light photoreceptors. Bio Sci 30:166–170Google Scholar
  75. 75.
    Gabrys H (1985) Chloroplast movement in Mougeotia induced by blue light pulses. Planta 166:134–140CrossRefPubMedGoogle Scholar
  76. 76.
    Tian Ch-H, Liu D-J, Gronheid R, Van der Auweraer M, De Schryver FC (2004) Mesoscopic organization of two-dimensional j-aggregates of thiacyanine in langmuir-schaefer films. Langmuir 20:11569–11576CrossRefPubMedGoogle Scholar
  77. 77.
    Takahashi D, Oda H, Izumi T, Hirohashi R (2005) Substituent effects on aggregation phenomena in aqueous solution of thiacarbocyanine dyes. Dyes Pigments 66:1–6CrossRefGoogle Scholar
  78. 78.
    Bojarski P, Matczuk A, Bojarski C, Kawski A, Kuklinski B, Zurkowska G, Diehl H (1996) Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution. Chem Phys Lett 210:485–499Google Scholar
  79. 79.
    Bojarski P (1997) Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films. Chem Phys Lett 278:225–232CrossRefGoogle Scholar
  80. 80.
    Bojarski P, Kulak L (1997) Nonradiative excitation energy transport between monomers and fluorescent dimers of rhodamine 6G in ethylene glycol. Asian J Spectros 1:107–119Google Scholar
  81. 81.
    Grajek H, Zurkowska G, Bojarski P, Kuklinski B, Smyk B, Drabant R, Bojarski C (1998) Spectroscopic manifestations of flavomononucleotide dimers in polyvinyl alcohol films. Biochim Biophys Acta 1384:253–267CrossRefPubMedGoogle Scholar
  82. 82.
    Bojarski P, Kulak L (1998) Forward and reverse excitation energy transport between monomers and fluorescent dimers of rhodamine 6 G in polyvinyl alcohol films. Asian J Spectros 2:91–102Google Scholar
  83. 83.
    Bojarski P, Matczuk A, Kulak L, Bojarski C (1999) Quantitative analysis of concentration fluorescence quenching in condensed systems. Asian J Spectros 5:1–21Google Scholar
  84. 84.
    Bojarski P, Grajek H, Zurkowska G, Smyk B, Kuklinski B, Drabent R (1999) Concentration quenching of flavomononucleotide in polyvinyl alcohol films. J Fluoresc 3(4):391–396CrossRefGoogle Scholar
  85. 85.
    Bojarski P (2000) Temperature effect on dimerization constant of dye molecules in polyvinyl alcohol films. Asian J Spectrosc 4:57–66Google Scholar
  86. 86.
    Bojarski P, Kulak L, Grajek H, Zurkowska G, Kaminska A, Kuklinski B, Bojarski C (2003) Excitation energy transport and trapping in concentrated solid solutions of flavomononucleotide. Biochim Biophys Acta 1619:201–208CrossRefPubMedGoogle Scholar
  87. 87.
    Synak A, Bojarski P, Gryczynski I, Gryczynski Z, Rangelowa-Jankowska S, Kulak L, Sadownik M, Kubicki A, Koprowska E (2008) Aggregation and excitation trapping of 3,3’-diethyl-9-methylthiacarbocyanine iodide in disordered and uniaxially oriented polymer films. Chem Phys Lett 461:222–225CrossRefGoogle Scholar
  88. 88.
    Drobizhev M, Sigel Ch, Rebane A (2000) Picosecond fluorescence decay and exciton dynamics in a new far-red molecular J-aggregate system. J Luminesc 86:107–116CrossRefGoogle Scholar
  89. 89.
    Janssens G, Touhari F, Gerritsen JW, Van Kempen H, Callant P, Deroover G, Vanderbroucke D (2001) Chemical structure, aggregate structure and optical properties of adsorbed dye molecules investigated by scanning tunneling microscopy. Chem Phys Lett 344:1–6CrossRefGoogle Scholar
  90. 90.
    Zakharova GV, Kombaev AR, Chibisov AK (2004) J Aggregation of meso-ethylsubstituted carbocyanine dyes in polymer films. High Energy Chem 38:180–183CrossRefGoogle Scholar
  91. 91.
    Del Monte F, Levy D (1999) Identification of oblique and coplanar inclined fluorescent J-dimers in rhodamine 110 doped sol-gel-glasses. J Phys Chem 103:8080–8086CrossRefGoogle Scholar
  92. 92.
    Lopez-Arbeloa F, Martinez-Martinez V, Banuelos-Prieto J, Lopez-Arbeloa I (2002) Adsorption of rhodamine 3B dye in saponite colloidal particles in aqueous suspensions. Langmuir 18:2658–2664CrossRefGoogle Scholar
  93. 93.
    Ferrer ML, del Monte F, Levy D (2003) Rhodamine 19 fluorescent dimers resulting from dye aggregation on the porous surface of sol-gel silica glasses. Langmuir 19:2782–2786CrossRefGoogle Scholar
  94. 94.
    Ferrer ML, del Monte F (2005) Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses. J Phys Chem 109:80–86CrossRefGoogle Scholar
  95. 95.
    Sadownik M, Bojarski P (2004) The effect of intermolecular donor–acceptor energy transfer on emission anisotropy in uniaxially oriented polymer films. Chem Phys Lett 396:293–297CrossRefGoogle Scholar
  96. 96.
    Sadownik M, Bojarski P, Kwiek P, Rangelowa S (2008) Energy transfer between unlike fluorophores in uniaxially oriented polymer films monitored by time – resolved and steady – state emission anisotropy. Opt Mater 30:810–813CrossRefGoogle Scholar
  97. 97.
    Bojarski P, Sadownik M, Kułak L, Rangełowa-Jankowska S, Synak A, Jankowski D, Gryczynski I, Grobelna P, Kubicki A, Directional energy transfer and acceptor fluorescence repolarization in two-component anisotropic polymer films, Chem Phys (submitted)Google Scholar
  98. 98.
    Sadownik M (2009) Nonradiative excitation energy transfer in two and three component systems of controllable degree. PhD thesis, University of Gdansk (in Polish)Google Scholar
  99. 99.
    Vassilev RF (1963) Spin-orbit coupling and intermolecular energy transfer. Nature 200:773–774CrossRefGoogle Scholar
  100. 100.
    Kawski A, Gryczynski Z (1987) Determination of transition-moment directions from photoselection in partially oriented systems. Z Naturforsch 42a:808–812Google Scholar
  101. 101.
    Gryczynski Z, Kawski A (1988) Directions of the electronic transition moments in dioxide-p-terphenyl. Z Naturforsch 43a:193–195Google Scholar
  102. 102.
    Rangełowa-Jankowska S, Kułak L, Bojarski P (2008) Nonradiative long range energy transfer in donor–acceptor systems with excluded volume. Chem Phys Lett 460:306–310Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • P. Bojarski
    • 1
    Email author
  • A. Synak
    • 1
  • L. Kułak
    • 2
  • S. Rangelowa-Jankowska
    • 1
  • A. Kubicki
    • 1
  • B. Grobelna
    • 3
  1. 1.Molecular Spectroscopy Division, Institute of Experimental PhysicsUniversity of GdanskGdanskPoland
  2. 2.Department of Theoretical Physics and Quantum InformaticsGdansk University of Technology, Faculty of Applied Physics and MathematicsGdanskPoland
  3. 3.Faculty of ChemistryUniversity of GdanskGdanskPoland

Personalised recommendations