Advertisement

Single-Molecule Force Spectroscopy of Polycystic Kidney Disease Proteins

  • Liang Ma
  • Meixiang Xu
  • Andres F. OberhauserEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 875)

Abstract

Atomic force microscopy in its single-molecule force spectroscopy mode is a nanomanipulation technique that is extensively used for the study of the mechanical properties of proteins. It is particularly suited to examine their response to stretching (i.e., molecular elasticity and mechanical stability). Here, we describe protein engineering strategies and single-molecule AFM techniques for probing protein mechanics, with special emphasis on polycystic kidney disease (PKD) proteins. We also provide step-by-step protocols for preparing proteins and performing single-molecule force measurements.

Key words

Atomic force microscopy Single-molecule force spectroscopy Protein mechanics Mechanical properties Protein elasticity Polycystic kidney disease Polycystin 

Notes

Acknowledgments

This work was funded by NIH grant R01DK073394, the John Sealy Memorial Endowment Fund for Biomedical Research, and by the Polycystic Kidney Foundation (grant 116a2r).

References

  1. 1.
    Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76CrossRefPubMedGoogle Scholar
  3. 3.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79CrossRefPubMedGoogle Scholar
  4. 4.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137CrossRefPubMedGoogle Scholar
  5. 5.
    Qian F, Wei W, Germino G, Oberhauser A (2005) The nanomechanics of polycystin-1 extracellular region. J Biol Chem 280:40723–40730CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Forman JR, Qamar S, Paci E, Sandford RN, Clarke J (2005) The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol 349:861–871CrossRefPubMedGoogle Scholar
  7. 7.
    Oberhauser AF, Carrion-Vazquez M (2008) Mechanical biochemistry of proteins one molecule at a time. J Biol Chem 283:6617–6621CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74:63–91CrossRefPubMedGoogle Scholar
  9. 9.
    Fisher TE, Carrion-Vazquez M, Oberhauser AF, Li H, Marszalek PE, Fernandez JM (2000) Single molecular force spectroscopy of modular proteins in the nervous system. Neuron 27:435–446CrossRefPubMedGoogle Scholar
  10. 10.
    Fisher TE, Marszalek PE, Oberhauser AF, Carrion-Vazquez M, Fernandez JM (1999) The micro-mechanics of single molecules studied with atomic force microscopy. J Physiol 520(Pt 1):5–14CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fisher TE, Oberhauser AF, Carrion-Vazquez M, Marszalek PE, Fernandez JM (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem Sci 24:379–384CrossRefPubMedGoogle Scholar
  12. 12.
    Best RB, Clarke J (2002) What can atomic force microscopy tell us about protein folding? Chem Commun (Camb) (3):183–192Google Scholar
  13. 13.
    Rounsevell RW, Steward A, Clarke J (2005) Biophysical investigations of engineered polyproteins: implications for force data. Biophys J 88:2022–2029CrossRefPubMedGoogle Scholar
  14. 14.
    Linke WA, Grutzner A (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Arch 456:101–115CrossRefPubMedGoogle Scholar
  15. 15.
    Muller DJ, Krieg M, Alsteens D, Dufrene YF (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol 20(1):4–13CrossRefPubMedGoogle Scholar
  16. 16.
    Samori B (2000) Stretching single molecules along unbinding and unfolding pathways with the scanning force microscope. Chemistry 6:4249–4255CrossRefPubMedGoogle Scholar
  17. 17.
    Mehta AD, Rief M, Spudich JA (1999) Biomechanics, one molecule at a time. J Biol Chem 274:14517–14520CrossRefPubMedGoogle Scholar
  18. 18.
    Rief M, Grubmuller H (2002) Force spectroscopy of single biomolecules. Chemphyschem 3:255–261CrossRefPubMedGoogle Scholar
  19. 19.
    Rabbi M, Marszalek PM (2008) Probing polysaccharide and protein mechanics by atomic force microscopy. In: Selvin PR, Ha T (eds) Single-molecule techniques. Cold Spring Harbor Laboratory Press, New York, pp 371–394Google Scholar
  20. 20.
    Rounsevell R, Forman JR, Clarke J (2004) Atomic force microscopy: mechanical unfolding of proteins. Methods 34:100–111CrossRefPubMedGoogle Scholar
  21. 21.
    Carrion-Vazquez M, Oberhauser AF, Diez H, Hervas R, Oroz J, Fernandez J, Martinez-Martín D (2006) Protein Nanomechanics – as studied by AFM single-molecule force spectroscopy. In: Arrondo JL, Alonso A (eds) Advance techniques in biophysics. Springer, Berlin, pp 163–245CrossRefGoogle Scholar
  22. 22.
    Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833CrossRefPubMedGoogle Scholar
  23. 23.
    Petean I, Tomoaia G, Horovitz O, Mocanu A, Tomoaia-Cotisel M (2008) Cysteine mediated assembly of gold nanoparticles. J Optoelectron Adv Mater 10:2289–2292Google Scholar
  24. 24.
    Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1:130–136CrossRefPubMedGoogle Scholar
  25. 25.
    Steward A, Toca-Herrera JL, Clarke J (2002) Versatile cloning system for construction of multimeric proteins for use in atomic force microscopy. Protein Sci 11:2179–2183CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE, Fernandez JM (2000) Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol 7:1117–1120CrossRefPubMedGoogle Scholar
  27. 27.
    Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447CrossRefPubMedGoogle Scholar
  28. 28.
    Sundberg M, Rosengren JP, Bunk R, Lindahl J, Nicholls IA, Tagerud S, Omling P, Montelius L, Mansson A (2003) Silanized surfaces for in vitro studies of actomyosin function and nanotechnology applications. Anal Biochem 323:127–138CrossRefPubMedGoogle Scholar
  29. 29.
    Sakaki N, Shimo-Kon R, Adachi K, Itoh H, Furuike S, Muneyuki E, Yoshida M, Kinosita K Jr (2005) One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys J 88:2047–2056CrossRefPubMedGoogle Scholar
  30. 30.
    Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Sensing specific molecular-interactions with the atomic-force microscope. Biosens Bioelectron 10:895–901CrossRefGoogle Scholar
  31. 31.
    Oberhauser AF, Hansma PK, Carrion-Vazquez M, Fernandez JM (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc Natl Acad Sci USA 98:468–472CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600CrossRefPubMedGoogle Scholar
  33. 33.
    Marko JF, Siggia ED (1995) Statistical-mechanics of supercoiled DNA. Phys Rev E 52:2912–2938CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular BiophysicsThe University of Texas Medical Branch at GalvestonGalvestonUSA
  3. 3.Department of Biochemistry, Sealy Center for Structural Biology and Molecular BiophysicsThe University of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations