Photosynthetic Antenna Complex LHCII Studied with Novel Fluorescence Techniques

  • Wieslaw I. GruszeckiEmail author
  • Rafal Luchowski
  • Wojciech Grudzinski
  • Zygmunt Gryczynski
  • Ignacy Gryczynski
Part of the Methods in Molecular Biology book series (MIMB, volume 875)


LHCII is the largest light-harvesting pigment-protein complex of plants, comprising more than half of photosynthetically active chlorophyll pigments in biosphere. Understanding relationship between the molecular structure of the complex and photophysical processes that undergo in this pigment-protein complex is an aim of numerous current studies. This chapter addresses possibility of the application of single-molecule fluorescence measurements and fluorescence lifetime imaging microscopy (FLIM) in a study of LHCII.

Key words

LHCII Single-molecule spectroscopy FLIM Photosynthetic antenna Photoprotection 



The research on LHCII is financed by the Ministry of Science and Higher Education of Poland from the funds for science in the years 2008–2011 within the research project N N303 285034. RL acknowledges the postdoctoral fellowship from the Ministry of Science and Higher Education of Poland (grant No.17/MOB/2007/0).


  1.  1.
    Kühlbrandt W (1994) Structure and function of the plant light-harvesting complexes, LHC-II. Curr Opin Struct Biol 4:519–528CrossRefGoogle Scholar
  2.  2.
    Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428:287–292CrossRefPubMedGoogle Scholar
  3.  3.
    Standfuss R, van Scheltinga ACT, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928CrossRefPubMedPubMedCentralGoogle Scholar
  4.  4.
    Krupa Z, Williams JP, Khan MU, Huner NPA (1992) The role of acyl lipids in reconstitution of lipid-depleted light-harvesting complex II from cold-hardened and nonhardened rye. Plant Physiol 100:931–938CrossRefPubMedPubMedCentralGoogle Scholar
  5.  5.
    Gruszecki WI, Gospodarek M, Grudzinski W, Mazur R, Gieczewska K, Garstka M (2009) Light-induced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): a resonance Raman study. J Phys Chem B 113:2506–2512CrossRefPubMedGoogle Scholar
  6.  6.
    Voigt B, Krikunova M, Lokstein H (2008) Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II. Photosynth Res 95:317–325CrossRefPubMedGoogle Scholar
  7.  7.
    van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532CrossRefPubMedGoogle Scholar
  8.  8.
    Garab G, Cseh Z, Kovacs L, Rajagopal S, Varkonyi Z, Wentworth M, Mustardy L, Der A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41:15121–15129CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wieslaw I. Gruszecki
    • 1
    Email author
  • Rafal Luchowski
    • 1
  • Wojciech Grudzinski
    • 1
  • Zygmunt Gryczynski
    • 2
  • Ignacy Gryczynski
    • 2
  1. 1.Department of Biophysics, Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Center for Commercialization of Fluorescence TechnologiesUniversity of North Texas Health Science CenterFort WorthUSA

Personalised recommendations