Advertisement

Metal-Enhanced Immunoassays

  • Ignacy GryczynskiEmail author
  • Rafal Luchowski
  • Evgenia G. Matveeva
  • Tanya Shtoyko
  • Pabak Sarkar
  • Julian Borejdo
  • Irina Akopova
  • Zygmunt Gryczynski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 875)

Abstract

The surface-confined assay format is one of the most convenient detection formats used in many immunoassays. Fluorescence emission from monolayers of dyes requires a strong excitation and good detection system. Such samples are susceptible to artifacts due to background fluorescence from substrates. We demonstrate that using silver nanostructures deposited on the slide substrate can significantly enhance measured fluorescence, reduce unwanted background and increase photostability of the used probes. Using thin layers of polymer doped with fluorescein, we tested two nanostructures—silver island films (SIFs) deposited on glass slides and self-assembled colloidal structures (SACS) deposited on thin silver film. The SACS surfaces show extraordinary fluorescence enhancements: over 100-folds in hot spots. We applied these surfaces for enhanced Alexa488 model immunoassay.

Key words

Fluorescence enhancement Alexa488 Silver nanoparticles Immunoassay Plasmonics 

Notes

Acknowledgments

This work was supported by Texas Emerging Technologies Fund Grant, NIH HG 004364 and R01AR048622, NSF DBI-0649889, and ARPATP Project 000130-0042-2007. RL is the recipient of the Research Mobility program from the Polish Ministry of Science and Higher Education. TS was supported by Research Corporation for Science Advancement (CCSA 7748) and The Welch Foundation (BP-0037).

References

  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  2. 2.
    Jeanmaire DL, Van Duyne RP (1974) Surface Raman spectrochemistry: I. Heterocyclic, aromatic andaliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  3. 3.
    Philpott MR (1975) Effect of surface plasmons on transition in molecules. J Chem Phys 62:1812–1817CrossRefGoogle Scholar
  4. 4.
    Weitz DA, Garoff S, Hanson CD, Gramila TJ (1982) Fluorescent lifetimes of molecules on silver-islands films. Opt Lett 7:89–91CrossRefPubMedGoogle Scholar
  5. 5.
    Das P, Metju H (1985) Enhancement of molecular fluorescence and photochemistry by small metal particles. J Phys Chem 89:4680–4687CrossRefGoogle Scholar
  6. 6.
    Leitner A, Lippitsch ME, Draxler S, Riegler M, Aussenegg FR (1985) Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques. Appl Phys B 36:105–109CrossRefGoogle Scholar
  7. 7.
    Tarcha PJ, DeSaja-Gonzales J, Rodrigues-Liorente S, Aroca R (1999) Surface-enhanced fluorescence on SiO2-coated silver island films. Appl Spectrosc 53:43–48CrossRefGoogle Scholar
  8. 8.
    Lakowicz JR, Shen B, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering: II. Effects of silver island films on fluorescence intensity, lifetimes and resonance energy transfer. Anal Biochem 301:261–277CrossRefPubMedGoogle Scholar
  9. 9.
    Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of metal films. Anal Chem 70:3898–3905CrossRefPubMedGoogle Scholar
  10. 10.
    Lukomska J, Malicka J, Gryczynski I, Lakowicz JR (2004) Fluorescence enhancements on silver colloid coated surfaces. J Fluoresc 14:417–423CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Geddes CD, Parfenov A, Roll D, Fang J, Lakowicz JR (2003) Electrochemical and laser depositionof silver for use in metal-enhanced fluorescence. Langmuir 19:6236–6241CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Corrigan TD, Guo S, Phaneuf RJ, Szmacinski H (2005) Enhanced fluorescence from periodic arrays of silver nanoparticles. J Fluoresc 15:777–784CrossRefPubMedGoogle Scholar
  13. 13.
    Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effect of fluorophore-to-silver distance on the emission of cyanine dye-labeled oligonucleotides. Anal Biochem 315:57–66CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2004) Noble-metal surfaces for metal-enhanced fluorescence. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, MoscowGoogle Scholar
  15. 15.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, NY, ch 25, pp 841–859Google Scholar
  16. 16.
    Matveeva EG, Gryczynski I, Gryczynski Z, Goldys EM (2009) Immunochemical detection of analytes by using fluorescence. In: Goldys EM (ed) Fluorescence applications in biotechnology and life science. WileyGoogle Scholar
  17. 17.
    Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363:239–245CrossRefPubMedGoogle Scholar
  18. 18.
    Barnett A, Matveeva EG, Gryczynski I, Gryczynski Z, Goldys EM (2007) Coupled plasmon effects for the enhancement of fluorescence immunoassays. Physica B 394:297–300CrossRefGoogle Scholar
  19. 19.
    Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem 107:8829–8833CrossRefGoogle Scholar
  20. 20.
    Goldys EM, Drozdowicz-Tomsia K, Xie F, Shtoyko T, Matveeva EG, Gryczynski I, Gryczynski Z (2007) J Am Chem Soc 129:12117–12122CrossRefPubMedGoogle Scholar
  21. 21.
    Shtoyko T, Matveeva EG, Chang I-F, Gryczynski Z, Goldys EM, Gryczynski I (2008) Enhanced fluorescence immunoassays on silver fractal-like structures. Anal Chem 80:1962–1966CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sorensen TJ, Laursen BW, Luchowski R, Shtoyko T, Akopova I, Gryczynski Z, Gryczynski I (2009) Enhanced fluorescence emission of Me-ADOTA by self-assambled silver nanoparticles on a gold film. Chem Phys Lett (in press)Google Scholar
  23. 23.
    Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo S-W, Park QH, Ihee H, Kim B (2009) Single nanowire on a film as an efficient SERS-active platform. J Am Chem Soc 131:758–762CrossRefPubMedGoogle Scholar
  24. 24.
    Gryczynski I, Malicka J, Nowaczyk K, Gryczynski Z, Lakowicz JR (2004) Effects of sample thickness on the optical properties of surface plasmon-coupled emission. J Phys Chem 108:12073–12083CrossRefGoogle Scholar
  25. 25.
    Matveeva EG, Gryczynski Z, Malicka J, Gryczynski I, Lakowicz JR (2004) Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal Biochem 334:303–311CrossRefPubMedGoogle Scholar
  26. 26.
    Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying mediated self-assembly of nanoparticles. Nature 426:271–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ignacy Gryczynski
    • 1
    Email author
  • Rafal Luchowski
    • 2
  • Evgenia G. Matveeva
    • 3
  • Tanya Shtoyko
    • 4
  • Pabak Sarkar
    • 3
  • Julian Borejdo
    • 3
  • Irina Akopova
    • 3
  • Zygmunt Gryczynski
    • 1
  1. 1.Center for Commercialization of Fluorescence TechnologiesUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Department of Biophysics, Institute of PhysicsMaria Curie-Sklodowska UniversityLublinPoland
  3. 3.Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence TechnologiesUniversity of North Texas Health Science CenterFort WorthUSA
  4. 4.University of Texas at TylerTylerUSA

Personalised recommendations