Skip to main content

Fluorescence Lifetime Imaging Comes of Age How to Do It and How to Interpret It

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Fluorescence lifetime imaging (FLI) has been used widely for measuring biomedical samples. Practical guidelines on taking successful FLI data are provided to avoid common errors that arise during the measurement. Several methods for analyzing and interpreting FLI results are also introduced; e.g., a model-free data analysis method called the polar plot allows visualization and analysis of FLI data without iterative fitting, and an image denoising algorithm called variance-stabilizing-transform TI Haar helps to elucidate the information of a complex biomedical sample. The instrument considerations and data analysis of Spectral-FLI are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gadella T (2009) FRET and FLIM techniques, vol 33. Elsevier Science, Oxford

    Google Scholar 

  2. Periasamy A, Clegg RM (2009) FLIM microscopy in biology and medicine, 1st edn. Chapman & Hall, Boca Raton

    Google Scholar 

  3. Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68:4107–4119

    Article  CAS  Google Scholar 

  4. Buranachai C, Kamiyama D, Chiba A, Williams BD, Clegg R (2008) Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, imageimprovement and wavelet analysis. J Fluoresc 18:929–942

    Article  CAS  PubMed  Google Scholar 

  5. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226:90–120

    Article  CAS  PubMed  Google Scholar 

  6. Hanley QS, Clayton AHA (2005) AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. J Microsc 218:62–67

    Article  CAS  PubMed  Google Scholar 

  7. Redford G, Clegg R (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815

    Article  CAS  PubMed  Google Scholar 

  8. Colyer R, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71:201–213

    Article  PubMed  Google Scholar 

  9. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16

    Article  CAS  PubMed  Google Scholar 

  10. Willett RM, Nowak RD (2003) Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans Med Imaging 22:332–350

    Article  PubMed  Google Scholar 

  11. Willett RM, Nowak RD (2004) Fast multiresolution photon-limited image reconstruction. In: IEEE international symposium on biomedical imaging: nano to macro. pp 1192–1195

    Google Scholar 

  12. Spring BQ, Clegg RM (2009) Image analysis for denoising full-field frequency-domain fluorescence lifetime images. J Microsc 235:221–237

    Article  CAS  PubMed  Google Scholar 

  13. Becker W, Bergmann A, Biskup C (2007) Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70:403–409

    Article  CAS  PubMed  Google Scholar 

  14. Volker U, Peter F, Iris R, Karsten K (2004) Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging. Scanning 26:217–225

    Google Scholar 

  15. Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys J 74:2210–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tinnefeld P, Herten D-P, Sauer M (2001) Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM). J Phys Chem A 105:7989–8003

    Article  CAS  Google Scholar 

  17. Thaler C, Koushik SV, Blank PS, Vogel SS (2005) Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89:2736–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siegel J, Elson DS, Webb SED, Parsons-Karavassilis D, Lévêque-Fort S, Cole MJ, Lever MJ, French PMW, Neil MAA, Juskaitis R, Sucharov LO, Wilson T (2001) Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning. Opt Lett 26:1338–1340

    Article  CAS  PubMed  Google Scholar 

  19. Rück A, Hülshoff CH, Kinzler I, Becker W, Steiner R (2007) SLIM: a new method for molecular imaging. Microsc Res Tech 70:485–492

    Article  CAS  PubMed  Google Scholar 

  20. Rück A, Dolp F, Hülshoff C, Hauser C, Scalfi-Happ C (2005) Fluorescence lifetime imaging in PDT. An overview. Med Laser Appl 20:125–129

    Article  Google Scholar 

  21. Riquelme BD, Dumas D, Valverde de Rasia J, Rasia RJ, Stoltz JF (2003) Analysis of the 3D structure of agglutinated erythrocyte using cell scan and confocal microscopy: characterization by FLIM-FRET. Proc SPIE 5139:190–198

    Article  CAS  Google Scholar 

  22. Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions. Arch Biochem Biophys 463:27–36

    Article  CAS  PubMed  Google Scholar 

  23. Provenzano P, Eliceiri K, Keely P (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26:357–370

    Article  CAS  PubMed  Google Scholar 

  24. De Pieter B, Dylan MO, Hugh BM, Clifford BT, Jose R-I, Christopher D, James M, Richard KPB, Daniel SE, Ian M, Lever MJ, Praveen A, Mark AAN, Paul MWF (2007) Rapid hyperspectral fluorescence lifetime imaging. Microsc Res Tech 70:481–484

    Article  Google Scholar 

  25. Peter M, Ameer-Beg SM, Hughes MKY, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88:1224–1237

    Article  CAS  PubMed  Google Scholar 

  26. Pan W, Qu J, Chen T, Sun L, Qi J (2009) FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death. Eur Biophys J 38:447–456

    Article  CAS  PubMed  Google Scholar 

  27. Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14:12217–12229

    Article  PubMed  Google Scholar 

  28. Hanley QS, Arndt-Jovin DJ, Jovin TM (2002) Spectrally resolved fluorescence lifetime imaging microscopy. Appl Spectrosc 56:155–166

    Article  CAS  Google Scholar 

  29. Glanzmann T, Ballini J-P, van den Bergh H, Wagnieres G (1999) Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Rev Sci Instrum 70:4067–4077

    Article  CAS  Google Scholar 

  30. Bird DK, Eliceiri KW, Fan C-H, White JG (2004) Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43:5173–5182

    Article  PubMed  Google Scholar 

  31. Biskup C, Zimmer T, Benndorf K (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat Biotechnol 22:220–224

    Article  CAS  PubMed  Google Scholar 

  32. Biskup C, Zimmer T, Kelbauskas L, Hoffmann B, Klöcker N, Becker W, Bergmann A, Benndorf K (2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microsc Res Tech 70:442–451

    Article  CAS  PubMed  Google Scholar 

  33. De Beule PAA, Dunsby C, Galletly NP, Stamp GW, Chu AC, Anand U, Anand P, Benham CD, Naylor A, French PMW (2007) A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev Sci Instrum 78:123101–123107

    Article  CAS  PubMed  Google Scholar 

  34. Luong AK, Gradinaru CC, Chandler DW, Hayden CC (2005) Simultaneous time- and wavelength-resolved fluorescence microscopy of single molecules. J Phys Chem B 109:15691–15698

    Article  CAS  PubMed  Google Scholar 

  35. Pelet S, Previte MJR, Kim D, Kim KH, Su T-TJ, So PTC (2006) Frequency domain lifetime and spectral imaging microscopy. Microsc Res Tech 69:861–874

    Article  PubMed  Google Scholar 

  36. Spriet C, Trinel D, Laffray S, Landry M, Vandenbunder B, Heliot L, Barbillat J (2006) Setup of a fluorescence lifetime and spectral correlated acquisition system for two-photon microscopy. Rev Sci Instrum 77:123702–123706

    Article  CAS  Google Scholar 

  37. Spriet C, Trinel D, Waharte F, Deslee D, Vandenbunder B, Barbillat J, Héliot L (2007) Correlated fluorescence lifetime and spectral measurements in living cells. Microsc Res Tech 70:85–94

    Article  CAS  PubMed  Google Scholar 

  38. Benninger RKP., McGinty J, Hofmann O, Requejo-Isidro J, Munro I, Elson DS, Dunsby C, Onfelt B, Davis DM, Neil MAA, deMello AJ, French PMW (2005) Application of multi-dimensional fluorescence imaging to microfluidic devices. In: conference on lasers and electro-optics Europe. p 620

    Google Scholar 

  39. Chorvat D, Chorvatova A (2006) Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 36:73–83

    Article  PubMed  Google Scholar 

  40. Dumas D, Gaborit N, Grossin L, Riquelme B, Gigant-Huselstein C, Isla Nd, Gillet P, Netter P, Stoltz JF (2004) Spectral and lifetime fluorescence imaging microscopies: New modalities of multiphoton microscopy applied to tissue or cell engineering. Biorheology 41:459–467

    CAS  PubMed  Google Scholar 

  41. Becker W, Bergmann A, Hink MA, König K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    Article  CAS  PubMed  Google Scholar 

  42. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grant DM, Elson DS, Schimpf D, Dunsby C, Requejo-Isidro J, Auksorius E, Munro I, Neil MA, French PM, Nye E, Stamp G, Courtney P (2005) Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source. Opt Lett 30:3353–3355

    Article  CAS  PubMed  Google Scholar 

  44. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM (2000) Fluorescence lifetime imaging (FLI) in real-time—a new technique in photosynthesis research. Photosynthetica 38:581–599

    Article  CAS  Google Scholar 

  45. Mizeret J, Stepinac T, Hansroul M, Studzinski A, van den Bergh H, Wagnieres G (1999) Instrumentation for real-time fluorescence lifetime imaging in endoscopy. Rev Sci Instrum 70:4689–4701

    Article  CAS  Google Scholar 

  46. Krishnan RV, Saitoh H, Terada H, Centonze VE, Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74:2714–2721

    Article  CAS  Google Scholar 

  47. Chandler D, Majumdar Z, Heiss G, Clegg R (2006) Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements. J Fluoresc 16:793–807

    Article  CAS  PubMed  Google Scholar 

  48. vandeVen M, Ameloot M, Valeur B, Boens N (2005) Pitfalls and their remedies in time-resolved fluorescence spectroscopy and microscopy. J Fluoresc 15:377–413

    Article  CAS  PubMed  Google Scholar 

  49. Dartigalongue T, Hache F (2003) Precise alignment of a longitudinal pockels cell for time-resolved circular dichroism experiments. J Opt Soc Am B 20:1780–1787

    Article  CAS  Google Scholar 

  50. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  51. Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefevre J-P, Valeur B, Gratton E, vandeVen M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149

    Article  CAS  PubMed  Google Scholar 

  52. Malachowski GC, Clegg RM, Redford GI (2007) Analytic solutions to modelling exponential and harmonic functions using chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching. J Microsc 228:282–295

    Article  PubMed  Google Scholar 

  53. Papageorgiou GC, Govindjee (2004) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Springer, Norwell

    Google Scholar 

  54. Lazár D (1999) Chlorophyll a fluorescence induction. BBA-Bioenergetics 1412:1–28

    Article  PubMed  Google Scholar 

  55. (2012) http://www.andor.com/

  56. Lichtenthaler HK (1988) Applications of chlorophyll fluorescence: in photosynthesis research, stress physiology, hydrobiology and remote sensing, 1st edn. Springer, Norwell

    Book  Google Scholar 

  57. (2012) http://gratings.newport.com/handbook/handbook.asp

  58. Singh S (1999) Diffraction gratings: aberrations and applications. Optic Laser Tech 31:195–218

    Article  Google Scholar 

  59. Simon JM, Gil MA, Fantino AN (1986) Czerny-turner monochromator: astigmatism in the classical and in the crossed beam dispositions. Appl Opt 25:3715–3720

    Article  CAS  PubMed  Google Scholar 

  60. Rosfjord KM, Villalaz RA, Gaylord TK (2000) Constant-bandwidth scanning of the Czerny-turner monochromator. Appl Opt 39:568–572

    Article  CAS  PubMed  Google Scholar 

  61. Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546:87–92

    Article  CAS  PubMed  Google Scholar 

  62. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. In: Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 245–265

    Google Scholar 

  63. Kraus B, Ziegler M, Wolff H (2007) Linear fluorescence unmixing in cell biological research. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, pp 863–872

    Google Scholar 

Download references

Acknowledgement

Yi-Chun Chen thanks the Taiwan Merit Scholarships (TMS-094-1-A-036) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Clegg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chen, YC., Spring, B.Q., Clegg, R.M. (2012). Fluorescence Lifetime Imaging Comes of Age How to Do It and How to Interpret It. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics