Fluorescence Lifetime Imaging Comes of Age How to Do It and How to Interpret It

  • Yi-Chun Chen
  • Bryan Q. Spring
  • Robert M. CleggEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 875)


Fluorescence lifetime imaging (FLI) has been used widely for measuring biomedical samples. Practical guidelines on taking successful FLI data are provided to avoid common errors that arise during the measurement. Several methods for analyzing and interpreting FLI results are also introduced; e.g., a model-free data analysis method called the polar plot allows visualization and analysis of FLI data without iterative fitting, and an image denoising algorithm called variance-stabilizing-transform TI Haar helps to elucidate the information of a complex biomedical sample. The instrument considerations and data analysis of Spectral-FLI are also discussed.

Key words

FLIM FLI Fluorescence lifetime imaging microscopy Polar plot Chebyshev transform TI Haar denoising Spectral FLIM 



Yi-Chun Chen thanks the Taiwan Merit Scholarships (TMS-094-1-A-036) for financial support.


  1. 1.
    Gadella T (2009) FRET and FLIM techniques, vol 33. Elsevier Science, OxfordGoogle Scholar
  2. 2.
    Periasamy A, Clegg RM (2009) FLIM microscopy in biology and medicine, 1st edn. Chapman & Hall, Boca RatonGoogle Scholar
  3. 3.
    Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68:4107–4119CrossRefGoogle Scholar
  4. 4.
    Buranachai C, Kamiyama D, Chiba A, Williams BD, Clegg R (2008) Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, imageimprovement and wavelet analysis. J Fluoresc 18:929–942CrossRefPubMedGoogle Scholar
  5. 5.
    Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226:90–120CrossRefPubMedGoogle Scholar
  6. 6.
    Hanley QS, Clayton AHA (2005) AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. J Microsc 218:62–67CrossRefPubMedGoogle Scholar
  7. 7.
    Redford G, Clegg R (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815CrossRefPubMedGoogle Scholar
  8. 8.
    Colyer R, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71:201–213CrossRefPubMedGoogle Scholar
  9. 9.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16CrossRefPubMedGoogle Scholar
  10. 10.
    Willett RM, Nowak RD (2003) Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans Med Imaging 22:332–350CrossRefPubMedGoogle Scholar
  11. 11.
    Willett RM, Nowak RD (2004) Fast multiresolution photon-limited image reconstruction. In: IEEE international symposium on biomedical imaging: nano to macro. pp 1192–1195Google Scholar
  12. 12.
    Spring BQ, Clegg RM (2009) Image analysis for denoising full-field frequency-domain fluorescence lifetime images. J Microsc 235:221–237CrossRefPubMedGoogle Scholar
  13. 13.
    Becker W, Bergmann A, Biskup C (2007) Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70:403–409CrossRefPubMedGoogle Scholar
  14. 14.
    Volker U, Peter F, Iris R, Karsten K (2004) Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging. Scanning 26:217–225Google Scholar
  15. 15.
    Vereb G, Jares-Erijman E, Selvin PR, Jovin TM (1998) Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys J 74:2210–2222CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tinnefeld P, Herten D-P, Sauer M (2001) Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM). J Phys Chem A 105:7989–8003CrossRefGoogle Scholar
  17. 17.
    Thaler C, Koushik SV, Blank PS, Vogel SS (2005) Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 89:2736–2749CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Siegel J, Elson DS, Webb SED, Parsons-Karavassilis D, Lévêque-Fort S, Cole MJ, Lever MJ, French PMW, Neil MAA, Juskaitis R, Sucharov LO, Wilson T (2001) Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning. Opt Lett 26:1338–1340CrossRefPubMedGoogle Scholar
  19. 19.
    Rück A, Hülshoff CH, Kinzler I, Becker W, Steiner R (2007) SLIM: a new method for molecular imaging. Microsc Res Tech 70:485–492CrossRefPubMedGoogle Scholar
  20. 20.
    Rück A, Dolp F, Hülshoff C, Hauser C, Scalfi-Happ C (2005) Fluorescence lifetime imaging in PDT. An overview. Med Laser Appl 20:125–129CrossRefGoogle Scholar
  21. 21.
    Riquelme BD, Dumas D, Valverde de Rasia J, Rasia RJ, Stoltz JF (2003) Analysis of the 3D structure of agglutinated erythrocyte using cell scan and confocal microscopy: characterization by FLIM-FRET. Proc SPIE 5139:190–198CrossRefGoogle Scholar
  22. 22.
    Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions. Arch Biochem Biophys 463:27–36CrossRefPubMedGoogle Scholar
  23. 23.
    Provenzano P, Eliceiri K, Keely P (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26:357–370CrossRefPubMedGoogle Scholar
  24. 24.
    De Pieter B, Dylan MO, Hugh BM, Clifford BT, Jose R-I, Christopher D, James M, Richard KPB, Daniel SE, Ian M, Lever MJ, Praveen A, Mark AAN, Paul MWF (2007) Rapid hyperspectral fluorescence lifetime imaging. Microsc Res Tech 70:481–484CrossRefGoogle Scholar
  25. 25.
    Peter M, Ameer-Beg SM, Hughes MKY, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88:1224–1237CrossRefPubMedGoogle Scholar
  26. 26.
    Pan W, Qu J, Chen T, Sun L, Qi J (2009) FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death. Eur Biophys J 38:447–456CrossRefPubMedGoogle Scholar
  27. 27.
    Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14:12217–12229CrossRefPubMedGoogle Scholar
  28. 28.
    Hanley QS, Arndt-Jovin DJ, Jovin TM (2002) Spectrally resolved fluorescence lifetime imaging microscopy. Appl Spectrosc 56:155–166CrossRefGoogle Scholar
  29. 29.
    Glanzmann T, Ballini J-P, van den Bergh H, Wagnieres G (1999) Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Rev Sci Instrum 70:4067–4077CrossRefGoogle Scholar
  30. 30.
    Bird DK, Eliceiri KW, Fan C-H, White JG (2004) Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43:5173–5182CrossRefPubMedGoogle Scholar
  31. 31.
    Biskup C, Zimmer T, Benndorf K (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat Biotechnol 22:220–224CrossRefPubMedGoogle Scholar
  32. 32.
    Biskup C, Zimmer T, Kelbauskas L, Hoffmann B, Klöcker N, Becker W, Bergmann A, Benndorf K (2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microsc Res Tech 70:442–451CrossRefPubMedGoogle Scholar
  33. 33.
    De Beule PAA, Dunsby C, Galletly NP, Stamp GW, Chu AC, Anand U, Anand P, Benham CD, Naylor A, French PMW (2007) A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Rev Sci Instrum 78:123101–123107CrossRefPubMedGoogle Scholar
  34. 34.
    Luong AK, Gradinaru CC, Chandler DW, Hayden CC (2005) Simultaneous time- and wavelength-resolved fluorescence microscopy of single molecules. J Phys Chem B 109:15691–15698CrossRefPubMedGoogle Scholar
  35. 35.
    Pelet S, Previte MJR, Kim D, Kim KH, Su T-TJ, So PTC (2006) Frequency domain lifetime and spectral imaging microscopy. Microsc Res Tech 69:861–874CrossRefPubMedGoogle Scholar
  36. 36.
    Spriet C, Trinel D, Laffray S, Landry M, Vandenbunder B, Heliot L, Barbillat J (2006) Setup of a fluorescence lifetime and spectral correlated acquisition system for two-photon microscopy. Rev Sci Instrum 77:123702–123706CrossRefGoogle Scholar
  37. 37.
    Spriet C, Trinel D, Waharte F, Deslee D, Vandenbunder B, Barbillat J, Héliot L (2007) Correlated fluorescence lifetime and spectral measurements in living cells. Microsc Res Tech 70:85–94CrossRefPubMedGoogle Scholar
  38. 38.
    Benninger RKP., McGinty J, Hofmann O, Requejo-Isidro J, Munro I, Elson DS, Dunsby C, Onfelt B, Davis DM, Neil MAA, deMello AJ, French PMW (2005) Application of multi-dimensional fluorescence imaging to microfluidic devices. In: conference on lasers and electro-optics Europe. p 620Google Scholar
  39. 39.
    Chorvat D, Chorvatova A (2006) Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 36:73–83CrossRefPubMedGoogle Scholar
  40. 40.
    Dumas D, Gaborit N, Grossin L, Riquelme B, Gigant-Huselstein C, Isla Nd, Gillet P, Netter P, Stoltz JF (2004) Spectral and lifetime fluorescence imaging microscopies: New modalities of multiphoton microscopy applied to tissue or cell engineering. Biorheology 41:459–467PubMedGoogle Scholar
  41. 41.
    Becker W, Bergmann A, Hink MA, König K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66CrossRefPubMedGoogle Scholar
  42. 42.
    Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grant DM, Elson DS, Schimpf D, Dunsby C, Requejo-Isidro J, Auksorius E, Munro I, Neil MA, French PM, Nye E, Stamp G, Courtney P (2005) Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source. Opt Lett 30:3353–3355CrossRefPubMedGoogle Scholar
  44. 44.
    Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM (2000) Fluorescence lifetime imaging (FLI) in real-time—a new technique in photosynthesis research. Photosynthetica 38:581–599CrossRefGoogle Scholar
  45. 45.
    Mizeret J, Stepinac T, Hansroul M, Studzinski A, van den Bergh H, Wagnieres G (1999) Instrumentation for real-time fluorescence lifetime imaging in endoscopy. Rev Sci Instrum 70:4689–4701CrossRefGoogle Scholar
  46. 46.
    Krishnan RV, Saitoh H, Terada H, Centonze VE, Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74:2714–2721CrossRefGoogle Scholar
  47. 47.
    Chandler D, Majumdar Z, Heiss G, Clegg R (2006) Ruby crystal for demonstrating time- and frequency-domain methods of fluorescence lifetime measurements. J Fluoresc 16:793–807CrossRefPubMedGoogle Scholar
  48. 48.
    vandeVen M, Ameloot M, Valeur B, Boens N (2005) Pitfalls and their remedies in time-resolved fluorescence spectroscopy and microscopy. J Fluoresc 15:377–413CrossRefPubMedGoogle Scholar
  49. 49.
    Dartigalongue T, Hache F (2003) Precise alignment of a longitudinal pockels cell for time-resolved circular dichroism experiments. J Opt Soc Am B 20:1780–1787CrossRefGoogle Scholar
  50. 50.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  51. 51.
    Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefevre J-P, Valeur B, Gratton E, vandeVen M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A (2007) Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem 79:2137–2149CrossRefPubMedGoogle Scholar
  52. 52.
    Malachowski GC, Clegg RM, Redford GI (2007) Analytic solutions to modelling exponential and harmonic functions using chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching. J Microsc 228:282–295CrossRefPubMedGoogle Scholar
  53. 53.
    Papageorgiou GC, Govindjee (2004) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19. Springer, NorwellGoogle Scholar
  54. 54.
    Lazár D (1999) Chlorophyll a fluorescence induction. BBA-Bioenergetics 1412:1–28CrossRefPubMedGoogle Scholar
  55. 55.
  56. 56.
    Lichtenthaler HK (1988) Applications of chlorophyll fluorescence: in photosynthesis research, stress physiology, hydrobiology and remote sensing, 1st edn. Springer, NorwellCrossRefGoogle Scholar
  57. 57.
  58. 58.
    Singh S (1999) Diffraction gratings: aberrations and applications. Optic Laser Tech 31:195–218CrossRefGoogle Scholar
  59. 59.
    Simon JM, Gil MA, Fantino AN (1986) Czerny-turner monochromator: astigmatism in the classical and in the crossed beam dispositions. Appl Opt 25:3715–3720CrossRefPubMedGoogle Scholar
  60. 60.
    Rosfjord KM, Villalaz RA, Gaylord TK (2000) Constant-bandwidth scanning of the Czerny-turner monochromator. Appl Opt 39:568–572CrossRefPubMedGoogle Scholar
  61. 61.
    Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546:87–92CrossRefPubMedGoogle Scholar
  62. 62.
    Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. In: Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 245–265Google Scholar
  63. 63.
    Kraus B, Ziegler M, Wolff H (2007) Linear fluorescence unmixing in cell biological research. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, pp 863–872Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yi-Chun Chen
    • 1
  • Bryan Q. Spring
    • 2
  • Robert M. Clegg
    • 3
    • 1
    • 2
    Email author
  1. 1.Bioengineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Loomis Laboratory of Physics, Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations