A Cleanup Method for Mass Spectrometry of Sphingosine-1-Phosphate in Blood and Solid Tissues Using a Phosphate Capture Molecule

  • Jun-ichi Morishige
  • Tamotsu TanakaEmail author
  • Kiyoshi Satouchi
Part of the Methods in Molecular Biology book series (MIMB, volume 874)


Cleanup technology and mass spectrometric determination of sphingosine-1-phosphate using a ­phosphate capture molecule are shown. The protocol is rapid, requires neither thin-layer chromatography nor liquid chromatography, and is applicable to both blood and solid tissue samples.

Key words

Sphingosine-1-phosphate Phos-tag Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Silica gel Cleanup technology 



This work was supported by the Strategic Support Project of Research Infrastructure Formation for Private Universities from the MEXT, Japan.


  1. 1.
    Murph M, Tanaka T, Pang J et al (2007) Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. Methods Enzymol 433:1–25PubMedCrossRefGoogle Scholar
  2. 2.
    Tokumura A, Carbone LD, Yoshioka Y et al (2009) Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-­phosphate in systemic sclerosis. J Med Sci 6:168–176Google Scholar
  3. 3.
    Morishige J, Urikura M, Takagi H et al (2010) A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tag. Rapid Commun Mass Spectrom 24:1075–1084PubMedCrossRefGoogle Scholar
  4. 4.
    Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianon by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans (8): 1189–1193Google Scholar
  5. 5.
    Takeda H, Kawasaki A, Takahashi M et al (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compound using a novel phosphate capture molecule. Rapid Commun Mass Spectrom 17:2075–2081PubMedCrossRefGoogle Scholar
  6. 6.
    Tanaka T, Tsutsui K, Hirano K et al (2004) Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule. J Lipid Res 45:2145–2150PubMedCrossRefGoogle Scholar
  7. 7.
    Hirano K, Matsui T, Tanaka T et al (2004) Production of 1,2-didocosahexaenoyl phosphatidylcholine by bonito muscle lysophosphatidylcholine/transacylase. J Biochem 136:477–483PubMedCrossRefGoogle Scholar
  8. 8.
    Morishige J, Touchika K, Tanaka T et al (2007) Production of bioactive lysophosphatidic acid by lysophospholipase D in hen egg white. Biochim Biophys Acta 1771: 491–499PubMedGoogle Scholar
  9. 9.
    Tanaka T, Horiuchi G, Matsuoka M et al (2009) Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leaves. Biosci Biotechnol Biochem 73:1293–1300PubMedCrossRefGoogle Scholar
  10. 10.
    Phos-tag Consortium Available; Accessed on 2003
  11. 11.
    Bartlett GR (1959) Phosphorus assay in ­column chromatography. J Biol Chem 234: 466–468PubMedGoogle Scholar
  12. 12.
    Chalvardjian A, Rudnicki E (1970) Determination of lipid phosphorus in the nanomolar range. Anal Biochem 36: 225–230PubMedCrossRefGoogle Scholar
  13. 13.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jun-ichi Morishige
    • 1
  • Tamotsu Tanaka
    • 2
    • 3
    Email author
  • Kiyoshi Satouchi
    • 4
  1. 1.Research Center for Green ScienceFukuyama UniversityFukuyamaJapan
  2. 2.Department of Applied Biological ScienceFukuyama UniversityFukuyamaJapan
  3. 3.Institute of Health BiosciencesUniversity of Tokushima Graduate SchoolTokushimaJapan
  4. 4.Department of Nutrition and Life ScienceFukuyama UniversityFukuyamaJapan

Personalised recommendations