Skip to main content

Forelimb Functional Assessments of Rats and Mice After Cervical Spinal Cord Injury

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Traumatic spinal cord injury (SCI) frequently occurs to the cervical segments. Regaining arm and hand function is the highest priority for persons with tetraplegia after cervical SCI. Given the tremendous impact that therapeutic changes of hand and arm function would have on the quality of their lives and since veterinary care leading to chronic cervical SCI survival became realizable, experimental research in nonhuman primates, canines, felines, rats, and mice is being conducted. The experiments aim to determine the extent and anatomical–physiological mechanisms of spontaneous hand and arm (also referred to as forepaw and forearm or forelimb) function recovery, and the lack thereof, as well as to develop treatments to improve it. The purposes of this chapter are (1) to report on forelimb functional assessment tests that have been developed and adapted for experiments using various strains of adult rats and mice with cervical SCI and (2) to provide general protocols of some frequently used ones assessing general usage, tactile discrimination, and skilled movements to guide future investigations. These are the Limb-Use Asymmetry or Cylinder Test, Grip Strength Test, Tactile Stimulation Test, and the Staircase Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.nscisc.uab.edu/public_content/facts_figures_2009.aspx

  2. Special Issue (2009) Spinal cord injury—neuroplasticity and recovery of respiratory function. In: Sieck GC, Mantilla CB (eds) Respiratory Physiol Neurobiol, 169:83–226

    Google Scholar 

  3. Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21:1371–1383

    Article  PubMed  Google Scholar 

  4. Tracey D (2004) Ascending and descending pathways in the spinal cord. In: Paxinos G (ed) The Rat Nervous System, 3rd edn. Elsevier Academic Press, San Diego, pp 149–164

    Google Scholar 

  5. Kaas JH, Qi HX, Burish MJ, Gharbawie OA, Onifer SM, Massey JM (2008) Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp Neurol 209:407–416

    Article  PubMed  Google Scholar 

  6. McKennna JE, Prusky GT, Whishaw IQ (2000) Cervical motoneuron topography reflects the proximodistal organization of muscles and movements of the rat forelimb: a retrograde carbocyanine dye analysis. J Comp Neurol 419:286–296

    Article  Google Scholar 

  7. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    PubMed  CAS  Google Scholar 

  8. Bunge RP, Puckett WR, Hiester ED (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72:305–315

    PubMed  CAS  Google Scholar 

  9. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21:429–440

    Article  PubMed  Google Scholar 

  10. http://www.ncbi.nlm.nih.gov/pubmed2009

  11. Webb AA, Muir GD (2005) Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat. Behav Brain Res 165:147–159

    Article  PubMed  Google Scholar 

  12. Nichols CM, Myckatyn TM, Rickman SR, Fox IK, Hadlock T, Mackinnon SE (2005) Choosing the correct functional assay: a comprehensive assessment of functional tests in the rat. Behav Brain Res 163:143–158

    Article  PubMed  Google Scholar 

  13. Tos P, Ronchi G, Nicolino S, Audisio C, Raimondo S, Fornaro M, Battiston B, Graziani A, Perroteau I, Geuna S (2008) Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J Neurosci Methods 169:119–127

    Article  PubMed  CAS  Google Scholar 

  14. Galtrey CM, Fawcett JW (2009) Characteri-zation of tests of functional recovery after median and ulnar nerve injury and repair in the rat forelimb. J Peripher Nerv Syst 12:11–27

    Article  Google Scholar 

  15. Ibrahim AG, Kirkwood PA, Raisman G, Li Y (2009) Restoration of hand function in a rat model of repair of brachial plexus injury. Brain 132:1268–1276

    Article  PubMed  Google Scholar 

  16. Girgis J, Merrett D, Kirkland S, Metz GA, Verge V, Fouad K (2007) Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain 130:2993–3003

    Article  PubMed  CAS  Google Scholar 

  17. Krajacic A, Ghosh M, Puentes R, Pearse DD, Fouad K (2009) Advantages of delaying the onset of rehabilitative reaching training in rats with incomplete spinal cord injury. Eur J Neurosci 29:641–651

    Article  PubMed  Google Scholar 

  18. Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387

    PubMed  CAS  Google Scholar 

  19. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  PubMed  CAS  Google Scholar 

  20. Starkey ML, Barritt AW, Yip PK, Davies M, Hamers FP, McMahon SB, Bradbury EJ (2005) Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp Neurol 195:524–539

    Article  PubMed  Google Scholar 

  21. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK, Gerzanich V (2007) Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 117:2105–2113

    Article  PubMed  CAS  Google Scholar 

  22. Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M (2008) Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 22:262–278

    Article  PubMed  CAS  Google Scholar 

  23. Plunet WT, Streijger F, Lam CK, Lee JH, Liu J, Tetzlaff W (2008) Dietary restriction started after spinal cord injury improves functional recovery. Exp Neurol 213:28–35

    Article  PubMed  Google Scholar 

  24. Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035:73–85

    Article  PubMed  CAS  Google Scholar 

  25. Tobias CA, Han SS, Shumsky JS, Kim D, Tumolo M, Dhoot NO, Wheatley MA, Fischer I, Tessler A, Murray M (2005) Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 22:138–156

    Article  PubMed  Google Scholar 

  26. Xiao M, Klueber KM, Lu C, Guo Z, Marshall CT, Wang H, Roisen FJ (2005) Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol 194:12–30

    Article  PubMed  Google Scholar 

  27. Xiao M, Klueber KM, Guo Z, Lu C, Wang H, Roisen FJ (2007) Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis 26:363–374

    Article  PubMed  CAS  Google Scholar 

  28. Lynskey JV, Sandhu FA, Dai HN, McAtee M, Slotkin JR, MacArthur L, Bregman BS (2006) Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. J Neurotrauma 23:617–634

    Article  PubMed  Google Scholar 

  29. Pearse DD, Lo TP Jr, Cho KS, Lynch MP, Garg MS, Marcillo AE, Sanchez AR, Cruz Y, Dietrich WD (2005) Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat. J Neurotrauma 22:680–702

    Article  PubMed  CAS  Google Scholar 

  30. Gensel JC, Tovar CA, Hamers FP, Deibert RJ, Beattie MS, Bresnahan JC (2006) Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. J Neurotrauma 23:36–54

    Article  PubMed  Google Scholar 

  31. Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J (2006) Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26:7405–7415

    Article  PubMed  CAS  Google Scholar 

  32. Muir GD, Webb AA, Kanagal S, Taylor L (2007) Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats. Eur J Neurosci 25:1501–1510

    Article  PubMed  Google Scholar 

  33. Stackhouse SK, Murray M, Shumsky JS (2008) Effect of cervical dorsolateral funiculotomy on reach-to-grasp function in the rat. J Neurotrauma 25:1039–1047

    Article  PubMed  Google Scholar 

  34. Dai H, MacArthur L, McAtee M, Hockenbury N, Tidwell JL, McHugh B, Mansfield K, Finn T, Hamers FP, Bregman BS (2009) Activity-based therapies to promote forelimb use after a cervical spinal cord injury. J Neurotrauma 26:1719–1732

    Article  PubMed  Google Scholar 

  35. Bretzner F, Liu J, Currie E, Roskams AJ, Tetzlaff W (2008) Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci 28:1795–1807

    Article  PubMed  Google Scholar 

  36. Kim BG, Dai HN, Lynskey JV, McAtee M, Bregman BS (2006) Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats. J Comp Neurol 497:182–198

    Article  PubMed  CAS  Google Scholar 

  37. Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236

    PubMed  CAS  Google Scholar 

  38. Onifer SM, Rodriquez JF, Santiago DI, Benitez JC, Kim DT, Brunschwig J-PR, Pacheco JT, Perrone JV, Llorente O, Hesse DH, Martinez-Arizala A (1997) Cervical spinal cord injury in the adult rat: assessment of forelimb dysfunction. Restor Neurol Neurosci 11:211–223

    PubMed  CAS  Google Scholar 

  39. de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28:3404–3414

    Article  PubMed  Google Scholar 

  40. García-Alías G, Barkhuysen S, Buckle M, Fawcett JW (2009) Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci 12:1145–1151

    Article  PubMed  Google Scholar 

  41. Lo TP Jr, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, Stagg M, Abril RM, Patel S, Dietrich WD, Pearse DD (2009) Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 514:433–448

    Article  PubMed  Google Scholar 

  42. Anderson KD, Abdul M, Steward O (2004) Quantitative assessment of deficits and recovery of forelimb motor function after cervical spinal cord injury in mice. Exp Neurol 190:184–191

    Article  PubMed  Google Scholar 

  43. Anderson KD, Gunawan A, Steward O (2005) Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Exp Neurol 194:161–174

    Article  PubMed  Google Scholar 

  44. Aguilar RM, Steward O (2010) A bilateral cervical contusion injury model in mice: assessment of gripping strength as a measure of forelimb motor function. Exp Neurol 221:38–53

    Article  PubMed  Google Scholar 

  45. Anderson KD, Gunawan A, Steward O (2007) Spinal pathways involved in the control of forelimb motor function in rats. Exp Neurol 206:318–331

    Article  PubMed  Google Scholar 

  46. Anderson KD, Sharp KG, Steward O (2009) Bilateral cervical contusion spinal cord injury in rats. Exp Neurol 220:9–22

    Article  PubMed  Google Scholar 

  47. Blanco JE, Anderson KD, Steward O (2007) Recovery of forepaw gripping ability and reorganization of cortical motor control following cervical spinal cord injuries in mice. Exp Neurol 203:333–348

    Article  PubMed  Google Scholar 

  48. Strong MK, Blanco JE, Anderson KD, Lewandowski G, Steward O (2009) An investigation of the cortical control of forepaw gripping after cervical hemisection injuries in rats. Exp Neurol 217:96–107

    Article  PubMed  Google Scholar 

  49. Sandrow HR, Shumsky JS, Amin A, Houle JD (2008) Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral nerve grafting does not impair forelimb behavior or axon regeneration. Exp Neurol 210:489–500

    Article  PubMed  Google Scholar 

  50. Sandrow-Feinberg HR, Izzi J, Shumsky JS, Zhukareva V, Houle JD (2009) Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury. J Neuro-trauma 26:721–731

    Article  PubMed  Google Scholar 

  51. García-Alías G, Lin R, Akrimi SF, Story D, Bradbury EJ, Fawcett JW (2008) Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 210:331–338

    Article  PubMed  Google Scholar 

  52. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn D, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  PubMed  CAS  Google Scholar 

  53. Onifer SM, Zhang YP, Burke DA, Brooks DL, Decker JA, McClure NJ, Floyd AR, Hall J, Proffitt BL, Shields CB, Magnuson DS (2005) Adult rat forelimb dysfunction after dorsal cervical spinal cord injury. Exp Neurol 192:25–38

    Article  PubMed  Google Scholar 

  54. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  CAS  Google Scholar 

  55. Yip PK, Wong LF, Pattinson D, Battaglia A, Grist J, Bradbury EJ, Maden M, McMahon SB, Mazarakis ND (2006) Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 15:3107–3118

    Article  PubMed  CAS  Google Scholar 

  56. Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360

    Article  PubMed  CAS  Google Scholar 

  57. Martinez M, Brezun JM, Zennou-Azogui Y, Baril N, Xerri C (2009) Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury. Eur J Neurosci 30:2356–2367

    Article  PubMed  Google Scholar 

  58. Martinez M, Delcour M, Russier M, Zennou-Azogui Y, Xerri C, Coq JO, Brezun JM (2010) Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection. Exp Neurol 221:186–197

    Article  PubMed  Google Scholar 

  59. Schrimsher GW, Reier PJ (1992) Forelimb motor performance following cervical spinal cord contusion injury in the rat. Exp Neurol 117:287–298

    Article  PubMed  CAS  Google Scholar 

  60. Bertelli JA, Mira JC (1993) Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat. J Neurosci Methods 46:203–208

    Article  PubMed  CAS  Google Scholar 

  61. Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, Houlé JD (2009) Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. J Neurosci 29:14881–14890

    Article  PubMed  CAS  Google Scholar 

  62. Whishaw IQ, Pellis SM, Gorny BP (1992) Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res 47:59–70

    Article  PubMed  CAS  Google Scholar 

  63. Schrimsher GW, Reier PJ (1993) Forelimb motor performance following dorsal column, dorsolateral funiculi, or ventrolateral funiculi lesions of the cervical spinal cord in the rat. Exp Neurol 120:264–276

    Article  PubMed  CAS  Google Scholar 

  64. Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228

    Article  PubMed  CAS  Google Scholar 

  65. Baird AL, Meldrum A, Dunnett SB (2001) The staircase test of skilled reaching in mice. Brain Res Bull 54:243–250

    Article  PubMed  CAS  Google Scholar 

  66. Maurissen JP, Marable BR, Andrus AK, Stebbins KE (2003) Factors affecting grip strength testing. Neurotoxicol Teratol 25:543–553

    Article  PubMed  CAS  Google Scholar 

  67. Nikkhah G, Rosenthal C, Hedrich HJ, Samii M (1998) Differences in acquisition and full performance in skilled forelimb use as measured by the ‘staircase test’ in five rat strains. Behav Brain Res 92:85–95

    Article  PubMed  CAS  Google Scholar 

  68. Titsworth WL, Onifer SM, Liu NK, Xu XM (2007) Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Exp Neurol 207:150–162

    Article  PubMed  CAS  Google Scholar 

  69. Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843

    Article  PubMed  Google Scholar 

  70. Whishaw IQ, Pellis SM (1990) The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav Brain Res 41:49–59

    Article  PubMed  CAS  Google Scholar 

  71. Whishaw IQ, Pellis SM, Gorny B, Kolb B, Tetzlaff W (1993) Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions. Behav Brain Res 56:59–76

    Article  PubMed  CAS  Google Scholar 

  72. Whishaw IQ, Gorny B, Sarna J (1998) Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav Brain Res 93:167–183

    Article  PubMed  CAS  Google Scholar 

  73. Metz GA, Whishaw IQ (2000) Skilled reaching an action pattern: stability in rat (Rattus norvegicus) grasping movements as a function of changing food pellet size. Behav Brain Res 116:111–122

    Article  PubMed  CAS  Google Scholar 

  74. Whishaw IQ, Metz GA (2002) Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behav Brain Res 134:323–336

    Article  PubMed  Google Scholar 

  75. Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W (2005) Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 196:352–364

    Article  PubMed  CAS  Google Scholar 

  76. Ruitenberg MJ, Levison DB, Lee SV, Verhaagen J, Harvey AR, Plant GW (2005) NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain 128:839–853

    Article  PubMed  Google Scholar 

  77. Ballermann M, Tompkins G, Whishaw IQ (2000) Skilled forelimb reaching for pasta guided by tactile input in the rat as measured by accuracy, spatial adjustments, and force. Behav Brain Res 109:49–57

    Article  PubMed  CAS  Google Scholar 

  78. Ballermann M, McKenna J, Whishaw IQ (2001) A grasp-related deficit in tactile discrimination following dorsal column lesion in the rat. Brain Res Bull 54:237–242

    Article  PubMed  CAS  Google Scholar 

  79. Ballermann M, Metz GA, McKenna JE, Klassen F, Whishaw IQ (2001) The pasta matrix reaching task: a simple test for measuring skilled reaching distance, direction, and dexterity in rats. J Neurosci Methods 106:39–45

    Article  PubMed  CAS  Google Scholar 

  80. Yamamoto M, Raisman G, Li Y (2009) Loss of directed fore-limb reaching after destruction of spinal grey matter. Brain Res 1265:47–52

    Article  PubMed  CAS  Google Scholar 

  81. Diener PS, Bregman BS (1998) Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 18:763–778

    PubMed  CAS  Google Scholar 

  82. McKenna JE, Whishaw IQ (1999) Complete compensation in skilled reaching success with associated impairments in limb synergies, after dorsal column lesion in the rat. J Neurosci 19:1885–1894

    PubMed  CAS  Google Scholar 

  83. VandenBerg PM, Hogg TM, Kleim JA, Whishaw IQ (2002) Long-Evans rats have a larger cortical topographic representation of movement than Fischer-344 rats: a microstimulation study of motor cortex in naïve and skilled reaching-trained rats. Brain Res Bull 59:197–203

    Article  PubMed  Google Scholar 

  84. Whishaw IQ, Gorny B, Foroud A, Kleim JA (2003) Long-Evans and Sprague-Dawley rats have similar skilled reaching success and limb representations in motor cortex but different movements: some cautionary insights into the selection of rat strains for neurobiological motor research. Behav Brain Res 145:221–232

    Article  PubMed  Google Scholar 

  85. Ackery A, Robins S, Fehlings MG (2006) Inhibition of Fas-mediated apoptosis through administration of soluble Fas receptor improves functional outcome and reduces posttraumatic axonal degeneration after acute spinal cord injury. J Neurotrauma 23:604–616

    Article  PubMed  Google Scholar 

  86. Baptiste DC, Austin JW, Zhao W, Nahirny A, Sugita S, Fehlings MG (2009) Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol 68:661–676

    Article  PubMed  CAS  Google Scholar 

  87. Andrews MR, Czvitkovich S, Dassie E, Vogelaar CF, Faissner A, Blits B, Gage FH, Ffrench-Constant C, Fawcett JW (2009) Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J Neurosci 29:5546–5557

    Article  PubMed  CAS  Google Scholar 

  88. Keyvan-Fouladi N, Raisman G, Li Y (2005) Delayed repair of corticospinal tract lesions as an assay for the effectiveness of transplantation of Schwann cells. Glia 51:306–311

    Article  PubMed  Google Scholar 

  89. Yamamoto M, Raisman G, Li D, Li Y (2009) Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion. Brain Res 1303:26–31

    Article  PubMed  CAS  Google Scholar 

  90. Kanagal SG, Muir GD (2007) Bilateral dorsal funicular lesions alter sensorimotor behaviour in rats. Exp Neurol 205:513–524

    Article  PubMed  Google Scholar 

  91. Kanagal SG, Muir GD (2008) Effects of combined dorsolateral and dorsal funicular lesions on sensorimotor behaviour in rats. Exp Neurol 214:229–239

    Article  PubMed  Google Scholar 

  92. Kanagal SG, Muir GD (2009) Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Exp Neurol 216:193–206

    Article  PubMed  Google Scholar 

  93. Kanagal SG, Muir GD (2008) The differential effects of cervical and thoracic dorsal funiculus lesions in rats. Behav Brain Res 187:379–386

    Article  PubMed  Google Scholar 

  94. Tom VJ, Kadakia R, Santi L, Houlé JD (2009) Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J Neurotrauma 26:2323–2333

    Article  PubMed  Google Scholar 

  95. Sandrow-Feinberg HR, Zhukareva V, Santi L, Miller K, Shumsky JS, Baker DP, Houle JD (2010) PEGylated interferon-beta modulates the acute inflammatory response and recovery when combined with forced exercise following cervical spinal contusion injury. Exp Neurol 223(2):439–451

    Article  PubMed  CAS  Google Scholar 

  96. Anderson KD, Sharp KG, Hofstadter M, Irvine KA, Murray M, Steward O (2009) Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury. Exp Neurol 220:23–33

    Article  PubMed  Google Scholar 

  97. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS (2010) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152–163

    PubMed  CAS  Google Scholar 

  98. Collazos-Castro JE, Muñetón-Gómez VC, Nieto-Sampedro M (2005) Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine 3:308–317

    Article  PubMed  Google Scholar 

  99. Collazos-Castro JE, Soto VM, Gutiérrez-Dávila M, Nieto-Sampedro M (2005) Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat. J Neurotrauma 22:544–558

    Article  PubMed  Google Scholar 

  100. Ying Z, Roy RR, Zhong H, Zdunowski S, Edgerton VR, Gomez-Pinilla F (2008) BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 155:1070–1078

    Article  PubMed  CAS  Google Scholar 

  101. Martinez M, Brezun JM, Bonnier L, Xerri C (2009) A new rating scale for open-field evaluation of behavioral recovery after cervical spinal cord injury in rats. J Neurotrauma 26:1043–1053

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Onifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Onifer, S.M. (2012). Forelimb Functional Assessments of Rats and Mice After Cervical Spinal Cord Injury. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_50

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics