Skip to main content

Morphological Assessments of Global Cerebral Ischemia: Electron Microscopy

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Ischemic stroke in humans often results in acute and delayed neuronal death, as well as a wide range of chronic neurological deficits. In order to understand neuronal loss and neurological deficits after brain ischemia, several animal models have been established, including global and focal ischemic models. Transient cerebral ischemia leads to neuronal death that does not occur immediately, but takes place after 2–3 days of vascular reperfusion, the so-called delayed neuronal death. During this 2–3 days’ delay period, all neurons destined to die appear normal under the light microscope. At the ultrastructural level, however, dramatic dissociation of polyribosomes, protein aggregation, and organelle damage takes place in postischemic neurons undergoing delayed neuronal death. Delayed neuronal death also occurs in the penumbral area after focal ischemia. The delay period provides a window of opportunity for understanding the underlying pathological processes and for developing therapies. This chapter describes the methods of transmission electron microscopy in the context of morphological studies of brain ischemia.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick T, Siesjo BK, Liu CL (2001) Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21:865–875

    Article  PubMed  CAS  Google Scholar 

  2. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20:1294–1300

    Article  PubMed  CAS  Google Scholar 

  3. Hu BR, Martone ME, Jones YZ, Liu CL (2000) Protein aggregation after transient cerebral ischemia. J Neurosci 20:3191–3199

    PubMed  CAS  Google Scholar 

  4. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 64:139–147

    Article  PubMed  CAS  Google Scholar 

  5. Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T (1992) Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 88:91–105

    Article  PubMed  CAS  Google Scholar 

  6. Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA (1998) Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci 18:625–633

    PubMed  CAS  Google Scholar 

  7. Liu CL, Ge P, Zhang F, Hu BR (2005) Co-translational protein aggregation after transient cerebral ischemia. Neuroscience 134: 1273–1284

    Article  PubMed  CAS  Google Scholar 

  8. Liu CL, Martone ME, Hu BR (2004) Protein ubiquitination in postsynaptic densities after transient cerebral ischemia. J Cereb Blood Flow Metab 24:1219–1225

    Article  PubMed  Google Scholar 

  9. Liu CL, Siesjö BK, Hu BR (2004) Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 127:113–123

    Article  PubMed  CAS  Google Scholar 

  10. Ge P, Luo Y, Liu CL, Hu B (2007) Protein aggregation and proteasome dysfunction after brain ischemia. Stroke 38:3230–3236

    Article  PubMed  CAS  Google Scholar 

  11. Zhang F, Liu CL, Hu BR (2006) Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem 98: 102–112

    Article  PubMed  CAS  Google Scholar 

  12. Dodson RF, Aoyagi M, Hartmann A, Tagashira Y (1974) Acute cerebral infarction and hypo-tension: an ultrastructural study. J Neuropathol Exp Neurol 33:400–407

    Article  PubMed  CAS  Google Scholar 

  13. Siesjo BK (1985) Oxygen deficiency and brain damage: localization, evolution in time, and mechanisms of damage. J Toxicol Clin Toxicol 23:267–280

    Article  PubMed  CAS  Google Scholar 

  14. Fukuda T, Wang H, Nakanishi H, Yamamoto K, Kosaka T (1999) Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia. Neurosci Res 33:49–55

    Article  PubMed  CAS  Google Scholar 

  15. Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19:4200–4210

    PubMed  CAS  Google Scholar 

  16. Olney JW (2003) Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol 3:101–109

    PubMed  CAS  Google Scholar 

  17. Mehmet H, Yue X, Squier MV, Lorek A, Cady E, Penrice J, Sarraf C, Wylezinska M, Kirkbride V, Cooper C, Brown GC, Wyatt JS, Reynolds EOR, Edwards AD (1994) Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci Lett 181:121–125

    Article  PubMed  CAS  Google Scholar 

  18. Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis–necrosis morphological continuum. J Comp Neurol 378:70–87

    PubMed  CAS  Google Scholar 

  19. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1988) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    Article  Google Scholar 

  20. Ciechanover A (2006) The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 66:S7–S19

    Article  Google Scholar 

  21. Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382

    Article  PubMed  CAS  Google Scholar 

  22. Klionsky DJ (2005) Autophagy. Curr Biol 15:R282–R283

    Article  PubMed  CAS  Google Scholar 

  23. Klionsky DJ (2006) Neurodegeneration: good riddance to bad rubbish. Nature 441:819–820

    Article  PubMed  CAS  Google Scholar 

  24. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  PubMed  CAS  Google Scholar 

  25. Eskelinen EL (2005) Macroautophagy in mammalian cells. In: Saftig P (ed) Lysosomes. Springer, New York, pp 166–177

    Chapter  Google Scholar 

  26. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502

    Article  PubMed  CAS  Google Scholar 

  28. Ciechomska IA, Tolkovsky AM (2007) Non-autophagic GFP-LC3 puncta induced by saponin and other detergents. Autophagy 3: 586–590

    CAS  Google Scholar 

  29. Kristian T (2004) Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium 36:221–233

    Article  PubMed  CAS  Google Scholar 

  30. Kristian T, Siesjo BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    Article  PubMed  CAS  Google Scholar 

  31. Kristian T, Gertsch J, Bates TE, Siesjo BK (2000) Characteristics of the calcium-triggered mitochondrial permeability transition in non-synaptic brain mitochondria: effect of cyclosporine A and ubiquinone 0. J Neurochem 74:1999–2009

    Article  PubMed  CAS  Google Scholar 

  32. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  33. Kristian T, Weatherby TM, Bates TE, Fiskum G (2002) Heterogeneity of the calcium-induced permeability transition in isolated non-synaptic brain mitochondria. J Neurochem 83: 1297–1308

    Article  PubMed  CAS  Google Scholar 

  34. Hazelton JL, Petrasheuskaya M, Fiskum G, Kristian T (2009) Cyclophilin D is expressed predominantly in mitochondria of gamma-aminobutyric acidergic interneurons. J Neurosci Res 87:1250–1259

    Article  PubMed  CAS  Google Scholar 

  35. Solenski NJ, diPierro CG, Trimmer PA, Kwan AL, Helms GA (2002) Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke 33:816–824

    Article  PubMed  Google Scholar 

  36. Bloom FE, Aghajanian GK (1968) Fine structural and cytochemical analysis of staining of synaptic junctions with phosphotungstic acid. J Ultrastruct Res 22:361–375

    Article  PubMed  CAS  Google Scholar 

  37. Jones DG, Colangelo W (1985) Ultrastructural investigation into the influence of ethanol on synaptic maturation in rat neocortex. I. Qualitative assessment. Dev Neurosci 7: 94–106

    Article  PubMed  CAS  Google Scholar 

  38. Miyazaki M (1989) Electron microscopic study on the synaptic glomeruli of rat cerebellum: quantitative and qualitative analyses using the ethanol-phosphotungstic acid (EPTA) procedure. Neuropediatrics 20:73–78

    Article  PubMed  CAS  Google Scholar 

  39. Martone ME, Jones YZ, Young SJ, Ellisman MH, Zivin JA, Hu BR (1999) Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J Neurosci 19:1988–1997

    PubMed  CAS  Google Scholar 

  40. Martone ME, Hu BR, Ellisman MH (2000) Alterations of hippocampal postsynaptic densities following transient ischemia. Hippocampus 10:610–616

    Article  PubMed  CAS  Google Scholar 

  41. McDowell EM, Trump BF (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100: 405–414

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingren Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Balan, I.S., Kristian, T., Liu, C., Saladino, A.J., Hu, B. (2012). Morphological Assessments of Global Cerebral Ischemia: Electron Microscopy. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics