Skip to main content

Morphological Assessments of Neonatal Hypoxia–Ischemia: In Situ Cell Degeneration

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1679 Accesses

Abstract

Cell death in the immature brain can be studied in many ways using morphological and biochemical markers. Essential requirements for cell death and degeneration assessment techniques in the brain include sufficient sensitivity and the ability to differentiate between apoptotic and necrotic cell death, and different forms of DNA damage, and to distinguish between different stages in the cell death process. Detection of cell death by morphology still remains the gold standard. Morphological analyses can also be combined with immunohistochemistry or in situ labeling using different types of specific antibodies or markers to identify cell types undergoing degeneration. This chapter introduces widely used methods to detect different types of cell death in the immature brain after hypoxic-ischemic brain injury by using morphological assessment combined with tissue staining. The procedures, including tissue preparation, staining, and evaluation, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin LJ et al (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46(4):281–309

    Article  PubMed  CAS  Google Scholar 

  2. MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 17(8):815–832

    Article  PubMed  CAS  Google Scholar 

  3. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3–15

    PubMed  CAS  Google Scholar 

  4. Wyllie AH, Beattie GJ, Hargreaves AD (1981) Chromatin changes in apoptosis. Histochem J 13(4):681–692

    Article  PubMed  CAS  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed  CAS  Google Scholar 

  6. Oppenheim RW et al (2008) Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway invol-ving autophagy. J Neurosci 28(6):1490–1497

    Article  PubMed  CAS  Google Scholar 

  7. Zhu C et al (2000) Correlation between caspase- 3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J Neurochem 75(2):819–829

    Article  PubMed  CAS  Google Scholar 

  8. Sidhu RS, Tuor UI, Del Bigio MR (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci Lett 223(2):129–132

    Article  PubMed  CAS  Google Scholar 

  9. Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378(1):70–87

    PubMed  CAS  Google Scholar 

  10. Ishimaru MJ et al (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 408(4):461–476

    Article  PubMed  CAS  Google Scholar 

  11. Bonfoco E et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92(16):7162–7166

    Article  PubMed  CAS  Google Scholar 

  12. Stroemer RP, Rothwell NJ (1998) Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1beta in the rat. J Cereb Blood Flow Metab 18(8):833–839

    Article  PubMed  CAS  Google Scholar 

  13. Nakajima W et al (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20(21):7994–8004

    PubMed  CAS  Google Scholar 

  14. Johnston MV, Nakajima W, Hagberg H (2002) Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 8(3):212–220

    PubMed  CAS  Google Scholar 

  15. Puka-Sundvall M et al (2000) Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res 125(1–2):43–50

    Article  PubMed  CAS  Google Scholar 

  16. Puka-Sundvall M et al (2000) Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Brain Res Dev Brain Res 125(1–2):31–41

    Article  PubMed  CAS  Google Scholar 

  17. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906

    Article  PubMed  CAS  Google Scholar 

  18. Zhu C et al (2005) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 12(2):162–176

    Article  PubMed  CAS  Google Scholar 

  19. Blomgren K, Leist M, Groc L (2007) Pathological apoptosis in the developing brain. Apoptosis 12(5):993–1010

    Article  PubMed  Google Scholar 

  20. Slikker W Jr et al (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98(1):145–158

    Article  PubMed  CAS  Google Scholar 

  21. Zhu C et al (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 86(2):306–317

    Article  PubMed  CAS  Google Scholar 

  22. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7):481–494

    Article  PubMed  CAS  Google Scholar 

  23. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751(1):37–46

    Article  PubMed  CAS  Google Scholar 

  24. Zhu C et al (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96(4):1016–1027

    Article  PubMed  CAS  Google Scholar 

  25. Puyal J et al (2009) Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 66(3):378–389

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klas Blomgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, C., Blomgren, K. (2012). Morphological Assessments of Neonatal Hypoxia–Ischemia: In Situ Cell Degeneration. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics