Skip to main content

Measurements of DNA Immobilized in the Alpha-Hemolysin Nanopore

  • Protocol
  • First Online:
Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

In the past decade, there have been extensive studies aimed at exploring the potential of protein nanopores to sequence single strands of DNA using resistive pulse sensing. The high speed of DNA electrophoretically driven through these pores (∼l μs/base) necessitates high bandwidth measurements, which prevent resolution of the picoampere differences in blockage current resulting from different nucleotides. Here, we describe a procedure for the immobilization of DNA in the α-hemolysin protein nanopore which enables low-noise, high-precision measurements capable of resolving subpicoampere differences in blockage current associated with differences in the sequence and structure of the DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braha O et al (2000) Simultaneous stochastic sensing of divalent metal ions. Nat Biotechnol 18(9):1005–1007

    Article  CAS  Google Scholar 

  2. Li J et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166–169

    Article  CAS  Google Scholar 

  3. Gu LQ et al (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    Article  CAS  Google Scholar 

  4. Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24(12):580–586

    Article  CAS  Google Scholar 

  5. Meller A et al (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A 97(3):1079–1084

    Article  CAS  Google Scholar 

  6. Akeson M et al (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77(6):3227–3233

    Article  CAS  Google Scholar 

  7. Fologea D et al (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5(9):1734–1737

    Article  CAS  Google Scholar 

  8. Song LZ et al (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866

    Article  CAS  Google Scholar 

  9. Sauer-Budge AF et al (2003) Unzipping kinetics of double-stranded DNA in a nanopore. Phys Rev Lett 90(23):238101

    Article  Google Scholar 

  10. Ashkenasy N et al (2005) Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew Chem Int Ed 44(9):1401–1404

    Article  CAS  Google Scholar 

  11. Vercoutere W et al (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel (vol 19, pg 248, 2001). Nat Biotechnol 19(7):681–681

    Article  CAS  Google Scholar 

  12. Henrickson SE et al (2000) Driven DNA transport into an asymmetric nanometer-scale pore. Phys Rev Lett 85(14):3057–3060

    Article  CAS  Google Scholar 

  13. Nakane J, Wiggin M, Marziali A (2004) A nanosensor for transmembrane capture and identification of single nucleic acid molecules (vol 87, pg 615, 2004). Biophys J 87(5):3618–3618

    Article  CAS  Google Scholar 

  14. Cockroft SL et al (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 130(3):818–820

    Article  CAS  Google Scholar 

  15. Purnell RF, Mehta KK, Schmidt JJ (2008) Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore. Nano Lett 8(9):3029–3034

    Article  CAS  Google Scholar 

  16. Purnell RF, Schmidt JJ (2009) Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano 3(9):2533–2538

    Article  CAS  Google Scholar 

  17. Stoddart D et al (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci 106(19):7702–7707

    Google Scholar 

  18. Menestrina G (1986) Ionic channels formed by staphylococcus-aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J Membrane Biol 90(2):177–190

    Article  CAS  Google Scholar 

  19. Bezrukov SM, Kasianowicz JJ (1993) Cur­rent noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70(15): 2352–2355

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Purnell, R., Schmidt, J. (2012). Measurements of DNA Immobilized in the Alpha-Hemolysin Nanopore. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics