Skip to main content

Measuring Single-Wall Carbon Nanotubes with Solid-State Nanopores

  • Protocol
  • First Online:
Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

Solid-state nanopores have been used widely to study biological polymers. Here, we expand the technique to analyze single-wall carbon nanotubes. By wrapping them in an amphiphilic layer, individual tubes can be translocated electrically through a nanopore, resulting in temporary interruptions in the trans-pore current reminiscent of measurements on DNA, RNA, and proteins. The technique may find use in discriminating nanotubes by size and thus electrical structure, facilitating their inclusion in electrical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang XH, Jovanovich SB, Krstic PS, Lindsay S, Ling XSS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  2. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  CAS  Google Scholar 

  3. Li JL, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615

    Article  CAS  Google Scholar 

  4. Storm AJ, Chen JH, Zandbergen HW, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E Stat Nonlin Soft Matter Phys 71:051903

    Article  CAS  Google Scholar 

  5. Skinner GM, van den Hout M, Broekmans O, Dekker C, Dekker NH (2009) Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett 9:2953–2960

    Article  CAS  Google Scholar 

  6. Fologea D, Ledden B, McNabb DS, Li JL (2007) Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett 91:053901

    Article  Google Scholar 

  7. Talaga DS, Li JL (2009) Single-molecule protein unfolding in solid state nanopores. J Am Chem Soc 131:9287–9297

    Article  CAS  Google Scholar 

  8. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Physics Today 52:22–28

    Article  CAS  Google Scholar 

  9. Dresselhaus MS, Dresselhaus G, Ecklund PC (1996) Science of Fullerenes and Carbon Nanotubes. Academic, San Diego

    Google Scholar 

  10. Krapf D, Wu MY, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109

    Article  CAS  Google Scholar 

  11. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  CAS  Google Scholar 

  12. Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95

    Article  CAS  Google Scholar 

  13. Smeets RMM, Keyser UF, Wu MY, Dekker NH, Dekker C (2006) Nanobubbles in solid-state nanopores. Phys Rev Lett 97:088101

    Article  CAS  Google Scholar 

  14. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  CAS  Google Scholar 

  15. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  16. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  CAS  Google Scholar 

  17. Sano M, Kamino A, Okamura J, Shinkai S (2001) Ring closure of carbon nanotubes. Science 293:1299–1301

    Article  CAS  Google Scholar 

  18. Tu XM, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  CAS  Google Scholar 

  19. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–U16

    Article  CAS  Google Scholar 

  20. Firnkes M, Pedone D, Knezevic J, Doblinger M, Rant U (2010) Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis, Nano Lett 10:2162–2167

    Article  CAS  Google Scholar 

  21. Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li JL (2005) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5:1905–1909

    Article  CAS  Google Scholar 

  22. Smeets RMM, Kowalczyk SW, Hall AR, Dekker NH, Dekker C (2009) Translocation of RecA-coated double-stranded DNA through solid-state nanopores. Nano Lett 9:3089–3095

    Article  CAS  Google Scholar 

  23. Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4:64–70

    Article  CAS  Google Scholar 

  24. Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197

    Article  CAS  Google Scholar 

  25. Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5:713–718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees Dekker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hall, A.R., Keegstra, J.M., Duch, M.C., Hersam, M.C., Dekker, C. (2012). Measuring Single-Wall Carbon Nanotubes with Solid-State Nanopores. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics