Skip to main content

Graphene Nanopore Devices for DNA Sensing

  • Protocol
  • First Online:
Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1–5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24:580

    Article  CAS  Google Scholar 

  2. Healy K, Schiedt B, Morrison AP (2007) Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine 2:875

    Article  CAS  Google Scholar 

  3. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209

    Article  CAS  Google Scholar 

  4. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 10:1146

    Article  Google Scholar 

  5. Wanunu M, Soni GV, Meller A (2009) Single-molecule studies of nucleic acid interactions using nanopores. In: Van Oijen A (ed) Springer handbook of single-molecule biophysics. Springer, New York

    Google Scholar 

  6. Gu L-Q, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441

    Article  CAS  Google Scholar 

  7. Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39:1115–1132

    Article  CAS  Google Scholar 

  8. Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23:2563

    Article  Google Scholar 

  9. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770

    Article  CAS  Google Scholar 

  10. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson AT, Drndić M (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915

    Article  CAS  Google Scholar 

  11. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166

    Article  CAS  Google Scholar 

  12. Venkatesan BM, Shah AB, Zuo J-M, Bashir R (2010) DNA sensing using nanocrystalline surface enhanced Al2O3 nanopore sensors. Adv Funct Mater 20:1616

    Google Scholar 

  13. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537

    Article  CAS  Google Scholar 

  14. Chen P, Mitsui T, Farmer DB, Golovchenko J, Gordon RG, Branton D (2004) Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 7:1333

    Article  Google Scholar 

  15. Trepagnier EH, Radenovic A, Sivak D, Geissler P, Liphardt J (2007) Controlling DNA capture and propagation through artificial nanopores. Nano Lett 7:2824

    Article  CAS  Google Scholar 

  16. Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 5:2044

    Article  Google Scholar 

  17. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced ampiphilic surfaces. Nature 388:431

    Article  CAS  Google Scholar 

  18. Zhang Y, Dai H (2000) Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett 77:3015

    Article  CAS  Google Scholar 

  19. Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 95:4716

    Article  CAS  Google Scholar 

  20. Smeets RMM, Keyser UF, Wu MY, Dekker NH, Dekker C (2006) Nanobubbles in solid-state nanopores. Phys Rev Lett 97:088101

    Article  CAS  Google Scholar 

  21. Smeets RMM, Keyser UF, Dekker NH, Dekker C (2008) Noise in solid-state nanopores. Proc Natl Acad Sci U S A 105:417

    Article  CAS  Google Scholar 

  22. Fischbein MD, Drndić M (2007) Electron beam nanosculpting of suspended graphene sheets. Nano Lett 7:1329

    Article  CAS  Google Scholar 

  23. Skinner GM, van den Hout M, Broekmans O, Dekker C, Dekker NH (2009) Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. Nano Lett 9:2953

    Article  CAS  Google Scholar 

  24. Chen P, Gu J, Brandin E, Kim Y-R, Wang Q, Branton D (2004) Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4:2293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ken Healy, Meni Wanunu, and Vishva Ray for contributing to the experiment and analysis, as well as Neil Peterman and John Bartel. We thank Michael D. Fischbein and Kim Venta for developing graphene transfer methods. We thank Zhengtang Luo and A. T. Charlie Johnson for their assistance in CVD growth of graphene. This work was supported by NIH Grant R21HG004767 and by the JSTO DTRA and the Army Research Office Grant #W911NF-06-1-0462. This work was also supported in part by the Penn Genome Frontiers Institute, the Nanotechnology Institute of the Commonwealth of Pennsylvania, and a grant with the Pennsylvania Department of Health. The Department of Health specifically disclaims responsibility for any analyses, interpretations, or conclusions. We acknowledge the use of facilities supported by the Nano/Bio Interface Center through the National Science Foundation NSEC DMR08-32802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Drndić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Merchant, C.A., Drndić, M. (2012). Graphene Nanopore Devices for DNA Sensing. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics