Skip to main content

Overview of Alternative Oligonucleotide Chemistries for Exon Skipping

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

The chemistry of the oligonucleotide backbone is crucial to obtaining high activity in vivo in exon skipping applications. Apart from the ability to bind strongly and sequence-specifically to pre-mRNA targets, the type of backbone also influences cell delivery, in vivo pharmacology, bio-distribution, toxicology, and ultimately the therapeutic use in humans. Reviewed here are classes of oligonucleotide commonly used for exon skipping applications, namely negatively charged backbones typified by RNA analogues having 2′-O-substitution and a phosphorothioate linkage and charge-neutral backbones such as PNA and PMO. Also discussed are peptide conjugates of PNA and PMO that enhance cellular and in vivo delivery and their potential for drug development. Finally, the prospects for development of other analogue types in exon skipping applications are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debart F, Abes S, Deglane G, Moulton HM, Clair P, Gait MJ et al (2007) Chemical modification to improve the cellular uptake of oligonucleotides. Curr Top Med Chem 7:727–737

    Article  PubMed  CAS  Google Scholar 

  2. Juliano RL (2005) Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr Opin Mol Ther 7:132–138

    PubMed  CAS  Google Scholar 

  3. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  PubMed  CAS  Google Scholar 

  4. Kurreck J (2008) Therapeutic oligonucleotides. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  5. Zatsepin TS, Turner JJ, Oretskaya TS, Gait MJ (2005) Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr Pharm Des 11:3639–3654

    Article  PubMed  CAS  Google Scholar 

  6. Bauman J, Jearawiriyapaisarn N, Kole R (2009) Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 19:1–14

    Article  PubMed  CAS  Google Scholar 

  7. Maier MA, Leeds JM, Balow G, Springer RH, Bharadwaj R, Manoharan M (2002) Nuclease resistance of oligonucleotides containing the tricyclic cytosine analogues phenoxazine and 9-(2-aminoethoxy)-phenoxazine (“G-clamp”) and origins of their nuclease resistance properties. Biochemistry 41:1323–1327

    Article  PubMed  CAS  Google Scholar 

  8. Holmes SC, Arzumanov A, Gait MJ (2003) Steric inhibition of human immunodeficiency virus type-1 Tat-dependent trans-activation in vitro and in cells by oligonucleotides containing 2′-O-methyl G-clamp ribonucleoside analogues. Nucleic Acids Res 31:2759–2768

    Article  PubMed  CAS  Google Scholar 

  9. Matsukura M, Shinozuka K, Zon G, Matsuya H, Reitz M, Cohen JS et al (1987) Phosphorothioate analogs of oligodeoxyribonucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci USA 84: 7706–7710

    Article  PubMed  CAS  Google Scholar 

  10. Straarup EM, Fisker N, Hedtjärn M, Lindholm MW, Rosenbohm C, Aarup V et al (2010) Short locked nucleic acid antisense oligonucleotides potently reduce apoliprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 38:7100–7111

    Article  PubMed  CAS  Google Scholar 

  11. Eckstein F (2007) The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 7:1021–1034

    Article  PubMed  CAS  Google Scholar 

  12. Takeshima Y, Yagi M, Wada H, Ishibashi K, Nishiyama A, Kakumoto M et al (2006) Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle ­dystrophin mRNA of Duchenne muscular ­dystrophy. Pediatr Res 59:690–694

    Article  PubMed  CAS  Google Scholar 

  13. Takeshima Y, Yagi M, Wada H, Matsuo M (2005) Intraperitoneal administration of phosphorothioate antisense oligodeoxynucleotide against splicing enhancer sequence induced exon skipping in dystrophin mRNA expressed in mdx skeletal muscle. Brain Dev 27:488–493

    Article  PubMed  Google Scholar 

  14. Kang S-H, Cho M-J, Kole R (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235–6239

    Article  PubMed  CAS  Google Scholar 

  15. Sierakowska H, Sambade MJ, Agrawal S, Kole R (1996) Repair of thalassemic human b-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci USA 93:12840–12844

    Article  PubMed  CAS  Google Scholar 

  16. Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7:1083–1090

    Article  PubMed  CAS  Google Scholar 

  17. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102:198–203

    Article  PubMed  CAS  Google Scholar 

  18. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  19. Goto M, Sawamura D, Nishie W, Sakai K, McMillan JR, Akiyama M et al (2006) Targeted skipping of a single exon harboring a premature termination codon mutation: implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol 126:2614–2620

    Article  PubMed  CAS  Google Scholar 

  20. Mulders SAM, van den Broeck WJAA, Wheeler T, Croes HJ, van Kuik-Romeijn P, de Kimpe SJ et al (2009) Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci USA 106:13915–13920

    Article  PubMed  CAS  Google Scholar 

  21. Karras JG, McKay RA, Dean NM, Monia BP (2000) Deletion of individual exons and induction of soluble murine interleukin-5 receptor-alpha chain expression throygh antisense oligonucleotide-mediated redirection of pre-mRNA splicing. Mol Pharmacol 58:380–387

    PubMed  CAS  Google Scholar 

  22. Vickers TA, Zhang H, Graham MJ, Lemonidis KM, Zhao C, Dean NM (2006) Modification of MyD88 mRNA splicing and inhibition of IL-1 signaling in cell culture and in mice with a 2′-O-methoxyethyl-modified oligonucleotide. J Immunol 176:3652–3661

    PubMed  CAS  Google Scholar 

  23. Sazani P, Kang S-H, Maier MA, Wei C, Dillman J, Summerton J et al (2001) Nuclear antisense effects of neutral, anionic and cationic analogs. Nucleic Acids Res 29:3965–3974

    PubMed  CAS  Google Scholar 

  24. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–1644

    Article  PubMed  CAS  Google Scholar 

  25. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR (2007) Enhancement of SMN2 Exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5:e73

    Article  PubMed  Google Scholar 

  26. Sazani P, Gemignani F, Kang S-H, Maier MA, Manoharan M, Persmark M et al (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 20:1228–1233

    Article  PubMed  CAS  Google Scholar 

  27. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M et al (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  28. Obika S, Morio K-I, Hari Y, Imanishi T (1999) Preparation and properties of 2′,5′-linked oligonucleotide analogues containing 3′-O,4′-C-methyleneribonucleosides. Biorg Med Chem Lett 9:515–518

    Article  CAS  Google Scholar 

  29. Takagi M, Yagi M, Ishibashi K, Takeshima Y, Surono A, Mastuo M et al (2004) Design of 2′-O-Me RNA/ENA chimera oligonucleotides to induce exon skipping in dystrophin pre-mRNA. Nucleic Acids Symp Ser 48:297–298

    Article  Google Scholar 

  30. Aartsma-Rus A, Kaman WE, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen G-JB et al (2004) Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther 11:1391–1398

    Article  PubMed  CAS  Google Scholar 

  31. Elayadi AN, Braasch DA, Corey DR (2002) Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. Biochemistry 41:9973–9981

    Article  PubMed  CAS  Google Scholar 

  32. Arzumanov A, Walsh AP, Rajwanshi VK, Kumar R, Wengel J, Gait MJ (2001) Inhibition of HIV-1 Tat-dependent trans-activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry 40:14645–14654

    Article  PubMed  CAS  Google Scholar 

  33. Fabani M, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336–346

    Article  PubMed  CAS  Google Scholar 

  34. Roberts J, Palma E, Sazani P, Ørum H, Cho M, Kole R (2006) Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 14:471–475

    Article  PubMed  CAS  Google Scholar 

  35. Graziewicz MA, Tarrant TK, Buckley B, Robert J, Fulton L, Hansen H et al (2008) An endogenous TNF-alpha antagonist induced by splice-switching oligonucleotides reduces inflammation in hepatitis and arthritis mouse models. Mol Ther 16:1316–1322

    Article  PubMed  CAS  Google Scholar 

  36. Yagi M, Takeshima Y, Surono A, Takagi M, Koizumi M, Matsuo M (2004) Chimeric RNA and 2′-O, 4′-C-ethylene-bridged nucleic acids have stronger activity than phosphorothioate oligodeoxynucleotyides in induction of exon 19 skipping in dystrophin mRNA. Oligonucleotides 14:33–40

    Article  PubMed  CAS  Google Scholar 

  37. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  38. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365:566–568

    Article  PubMed  CAS  Google Scholar 

  39. Karras JG, Maier MA, Lu T, Watt A, Manoharan M (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-α chain. Biochemistry 40:7853–7859

    Article  PubMed  CAS  Google Scholar 

  40. Siwkowski AM, Malik L, Esau CC, Maier MA, Wancewicz EV, Albertshofer K et al (2004) Identification and functional validation of PNAs that inhibit murine CD40 expression by redirection of splicing. Nucleic Acids Res 32:2695–2706

    Article  PubMed  CAS  Google Scholar 

  41. Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16:38–45

    Article  PubMed  CAS  Google Scholar 

  42. Yin H, Betts C, Saleh AF, Ivanova GD, Lee H, Seow Y et al (2010) Opimization of peptide nucleic acids antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Mol Ther 18:819–827

    Article  PubMed  CAS  Google Scholar 

  43. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  PubMed  CAS  Google Scholar 

  44. Moulton HM, Moulton JD (2008) Antisense morpholino oligomers and their peptide conjugates. In: Kurreck J (ed) Therapeutic oligonucleotides. Royal Society of Chemistry, Cambridge, pp 43–79

    Chapter  Google Scholar 

  45. Moulton HM, Moulton JD (2010) Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 1798:2296–2303

    Article  PubMed  CAS  Google Scholar 

  46. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C et al (2009) Restoration of dystrophin expression in Duchenne muscular dystrophy: a single blind placebo-controlled dose escalation study using morpholino oligomer AVI-4658. Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  47. Schmajuk G, Sierakowska H, Kole R (1999) Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 274:21783–21789

    Article  PubMed  CAS  Google Scholar 

  48. Gebski BL, Mann CJ, Fletcher S, Wilton SD (2003) Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet 12:1801–1811

    Article  PubMed  CAS  Google Scholar 

  49. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfield J, Wilton SD et al (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  PubMed  CAS  Google Scholar 

  50. Fletcher S, Honeyman K, Fall AM, Hardin PL, Johnsen RD, Wilton SD (2006) Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 8:207–216

    Article  PubMed  CAS  Google Scholar 

  51. Heemskerk HA, de Winter CL, de Kimpe SJ, van Kuik-Romeijn P, Heuvelmans N, Platenburg G et al (2009) In vivo comparison of 2′-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–266

    Article  PubMed  CAS  Google Scholar 

  52. Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT et al (2009) Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 325:336–339

    Article  PubMed  CAS  Google Scholar 

  53. Fattal E, Bochot E (2008) State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 364:237–248

    Article  PubMed  CAS  Google Scholar 

  54. Zhao X, Pan F, Holt CM, Lewis AL, Lu JR (2009) Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin Drug Deliv 6:673–686

    Article  PubMed  CAS  Google Scholar 

  55. Ferlini A, Sabatelli P, Fabris M, Bassi E, Falzaranos S, Vattemi G et al (2010) Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene Ther 17:432–438

    Article  PubMed  CAS  Google Scholar 

  56. Williams JH, Schray RC, Sirsi S, Lutz GJ (2008) Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression on skeletal muscle of mdx mice. BMC Biotechnol 8:35

    Article  PubMed  Google Scholar 

  57. Lebleu B, Moulton HM, Abes R, Ivanova GD, Abes S, Stein DA et al (2008) Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 60:517–529

    Article  PubMed  CAS  Google Scholar 

  58. Said HF, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726

    Article  Google Scholar 

  59. Abes S, Moulton HM, Clair P, Prevot P, Youngblood DS, Wu RP et al (2006) Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 116:304–313

    Article  PubMed  CAS  Google Scholar 

  60. Abes R, Arzumanov A, Moulton HM, Abes S, Ivanova GD, Iversen PL et al (2007) Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem Soc Trans 35:775–779

    Article  PubMed  CAS  Google Scholar 

  61. Bendifallah N, Rasmussen FW, Zachar V, Ebbesen P, Nielsen PE, Koppelhus U (2006) Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjug Chem 17:750–758

    Article  PubMed  CAS  Google Scholar 

  62. El-Andaloussi S, Johansson HJ, Lundberg P, Langel U (2006) Induction of splice correction by cell-penetrating peptide nucleic acids. J Gene Med 8:1262–1273

    Article  PubMed  CAS  Google Scholar 

  63. Abes R, Moulton HM, Clair P, Yang ST, Abes S, Melikov K et al (2008) Delivery of steric block morpholino oligomers by (R-X-R)4 peptides: structure-activity studies. Nucleic Acids Res 36:6343–6354

    Article  PubMed  CAS  Google Scholar 

  64. Abes S, Turner JJ, Ivanova GD, Owen D, Williams D, Arzumanov A et al (2007) Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res 35:4495–4502

    Article  PubMed  CAS  Google Scholar 

  65. Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJ, Lebleu B et al (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 36:6418–6428

    Article  PubMed  CAS  Google Scholar 

  66. Wancewicz EV, Maier MA, Siwkowski AM, Altertshofer K, Winger TM, Berdeja A et al (2010) Peptide nucleic acids conjugated to short basic peptide show improved pharmacokinetics and antisense activity in adipose tissue. J Med Chem 53:3919–3926

    Article  PubMed  CAS  Google Scholar 

  67. Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S et al (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16: 1624–1629

    Article  PubMed  CAS  Google Scholar 

  68. Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Li J et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modifies morpholino oligomer. Proc Natl Acad Sci USA 105:14814–14819

    Article  PubMed  CAS  Google Scholar 

  69. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  PubMed  CAS  Google Scholar 

  70. Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iversen PL et al (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18:4405–4414

    Article  PubMed  CAS  Google Scholar 

  71. Yin H, Saleh AF, Betts C, Camiletti P, Seow Y, Ashraf S, Arzumanov A, Gait MJ, Wood MJA (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19:1295–1303.

    Article  PubMed  CAS  Google Scholar 

  72. Alam MR, Dixit V, Kang H, Li ZB, Chen X, Trejo J et al (2008) Intracellular delivery of an anionic antisense oligonucleotide via receptor mediated endocystosis. Nucleic Acids Res 36:2764–2776

    Article  PubMed  CAS  Google Scholar 

  73. Ming X, Alam MR, Fisher M, Yan Y, Chen X, Juliano RL (2010) Intracellular delivery of an antisense oligonucleotide via endocytosis of a G-protein coupled receptor. Nucleic Acids Res 38:6567–6576

    Article  PubMed  CAS  Google Scholar 

  74. Wu B, Li Y-F, Morcos PA, Doran TJ, Lu P, Lu QL (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17:864–871

    Article  PubMed  CAS  Google Scholar 

  75. Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G et al (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37:70–77

    Article  PubMed  CAS  Google Scholar 

  76. Frieden M, Christensen SM, Mikkelsen N, Rosenbohm C, Thrue CA, Westergaard M et al (2003) Expanding the design horizon of antisense oligonucleotides with alpha-L-LNA. Nucleic Acids Res 31:6365–6372

    Article  PubMed  CAS  Google Scholar 

  77. Prakash TP, Siwkowski AM, Allerson CR, Migawa MT, Lee S, Gaus HJ et al (2010) Antisense oligonucleotides containing conformationally constrained 2′,4′-(N-methoxy)aminomethylene and 2′,4′-aminooxymethylene and 2′-O,4′-C-aminomethylene bridged nucleoside analogues show improved potency on animal models. J Med Chem 53:1636–1650

    Article  PubMed  CAS  Google Scholar 

  78. Seth PP, Siwkowski AM, Allerson CR, Vasques G, Lee S, Prakash TP et al (2009) Short antisense oligonucleotides with novel 2′-4′ conformationally restricted nucleoside ­analogues show improved potency without increased toxicity in animals. J Med Chem 52:10–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Gait laboratory is supported by the Medical Research Council (Unit programme U105178803). We thank Matthew Wood and Haifang Yin (University of Oxford) for a fruitful and stimulating collaboration in exon skipping applications of ONs and for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saleh, A.F., Arzumanov, A.A., Gait, M.J. (2012). Overview of Alternative Oligonucleotide Chemistries for Exon Skipping. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics