Skip to main content

Direct Fabrication as a Patient-Targeted Therapeutic in a Clinical Environment

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutmacher DW, Cool S (2007) Concepts of scaffold-based tissue engineering – the rationale to use solid free-form fabrication techniques. J Cell Mol Med 11(4):654–669

    Article  CAS  Google Scholar 

  2. Lam CXF, Teoh SH, Hutmacher DW (2007) Comparison of degradation of PCL and PCL-TCP scaffolds in alkaline medium. Polym Int 6:718–728

    Article  Google Scholar 

  3. Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10:569–576

    Article  Google Scholar 

  4. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  CAS  Google Scholar 

  5. Bach AD, Arkudas A, Tjiawi J, Polykandriotis E, Kneser U, Horch RE, Beier JP (2006) A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 10:716–726

    Article  CAS  Google Scholar 

  6. Kneser U, Stangenberg L, Ohnolz J, Buettner O, Stern-Straeter J, Mobest D, Horch RE, Stark GB, Schaefer DJ (2006) Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J Cell Mol Med 10:695–670

    Article  CAS  Google Scholar 

  7. Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW (2007) Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 28:814–824

    Article  CAS  Google Scholar 

  8. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  Google Scholar 

  9. Oest ME, Dupont KM, Kong H-J, Mooney DJ, Guldberg RE (2005) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 17415756 (P,S,E,B,D)

    Google Scholar 

  10. Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH (2005) Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 26:3739–3748

    Article  CAS  Google Scholar 

  11. Suciati T, Howard D, Barry J et al (2006) Zonal release of proteins within tissue engineering scaffolds J Mater Sci Mater Med 17(11):1049–1056

    Google Scholar 

  12. Kanczler JM, Barry J, Ginty P et al (2007) Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 352:135–141

    Google Scholar 

  13. Kain MS, Einhorn TA (2005) Recombinant human bone morphogenetic proteins in the treatment of fractures. Foot Ankle Clin 10:639–650, viii

    Google Scholar 

  14. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner MG, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl RL, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens PM, Rondia J, Rossouw WC, Daneel PJ, Ruff S, Ruter A, Santavirta S, Schildhauer TA, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne RB, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A,Wisniewski T (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A:2123–2134

    Google Scholar 

  15. De Long WG, Jr., Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 89:649–658

    Google Scholar 

  16. Hutmacher DW, Woodruff MA (2008) Design, fabrication and characterisation of scaffolds via solid free form fabrication techniques. In: Chu PK, Liu X (eds) Handbook of fabrication and processing of biomaterials. CRC Press/Taylor and Francis Group, pp 45–68

    Google Scholar 

  17. Hutmacher, Dietmar W, Woodruff, Maria A (2007) Composite scaffolds for bone engineering. In: Fakirov S, Bhattacharyya D (eds) Handbook of engineering biopolymers: homopolymers, blends and composites. Hanser Gardner, Germany, Munich, pp 773–798

    Google Scholar 

  18. Schantz JT, Lim TC, Ning C, Teoh SH, Tan KC, Wang SC, Hutmacher DW (2006) Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery 58:ONS-E176; discussion ONS-E176

    Google Scholar 

  19. Zhou YF, Sae-Lim V, Chou AM, Hutmacher DW, Lim TM (2006) Does seeding density affect in vitro mineral nodules formation in novel composite scaffolds? J Biomed Mater Res A 78:183–193

    CAS  Google Scholar 

  20. Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop Relat Res 263:30–48

    Google Scholar 

  21. Hutmacher DW, Garcia AJ (2005) Scaffold-based bone engineering but using genetically modified cells. Gene 347:1–10

    Article  CAS  Google Scholar 

  22. Cuevas P, de Paz V, Cuevas B, Marin-Martinez J, Picon-Molina M, Fernandez-Pereira A, Gimenez-Gallego G (1997) Osteopromotion for cranioplasty: an experimental study in rats using acidic fibroblast growth factor. Surg Neurol 47:242–246

    Article  CAS  Google Scholar 

  23. Tabata Y (2008) Current status of regenerative medical therapy based on drug delivery technology. Reprod Biomed Online 16(1):70–80

    Article  Google Scholar 

  24. Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO (2006) Fracture healing in the elderly patient. Exp Gerontol 41(11):1080–1093

    Article  Google Scholar 

  25. SSIB, AREJ (2004) Bone defect repair in rat tibia by TGF-beta1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank 5:223–230.136

    Google Scholar 

  26. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6

    Article  Google Scholar 

  27. S, Ryder J, Shemilt I, Mugford M, Harvey I, Song F (2007) Clinical effectiveness and costeffectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess 11(30):1–150, iii–iv

    Google Scholar 

  28. Robinson Y, Heyde CE, Tschöke SK, Mont MA, Seyler TM, Ulrich SD (2008) Evidence supporting the use of bone morphogenetic proteins for spinal fusion surgery. Expert Rev Med Devices 5(1):75–84

    Article  CAS  Google Scholar 

  29. Shakesheff KM, France RM, Quirk RA Porous matrix, inventors. International Patent WO2004084968-A1, GB2415142-A, EP1605984-A1, Regentec LTD

    Google Scholar 

  30. Pratoomsoot C et al (2008) A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials 29(3):272–281

    Article  CAS  Google Scholar 

  31. Howdle SM, Watson MS, Whitaker MJ, Popov VK, Davies MC, Mandel FS, Don WJ, Shakesheff KM et al (2001) Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chem Commun 1:109–110

    Article  Google Scholar 

  32. Whitaker MJ et al (2005) The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J Control Release 101(1–3):85–92

    Article  CAS  Google Scholar 

  33. Suciati T, Daniel H, Barry J, Everitt N, Shakesheff K, Rose F (2006) Zonal release of proteins within tissue engineering scaffolds. J Mater Sci Mater Med 17:1049

    Article  CAS  Google Scholar 

  34. Kanczler JM et al (2007) Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 352(1):135–141

    Article  CAS  Google Scholar 

  35. Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor mediated repair of critically-sized bone defects. J Orthop Res 25(7):941–950

    Article  CAS  Google Scholar 

  36. Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE (2007) Combination of platelet rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res 81(4):888–899

    Article  Google Scholar 

  37. Peng H et al (2005) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Bone Miner Res 20:2017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar W. Hutmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hutmacher, D.W., Woodruff, M.A., Shakesheff, K., Guldberg, R.E. (2012). Direct Fabrication as a Patient-Targeted Therapeutic in a Clinical Environment. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics