Skip to main content

Follow-Up of Natural Products Isolation

  • Protocol
  • First Online:
  • 7940 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Follow-up of natural products isolation refers to re-isolation of compound(s) of interest in larger amounts for further pharmacological testing, conclusive structure elucidation, structure modifications to synthesize analogs for structure–activity relationships (SAR) studies, preformulation and formulation studies or clinical trials. In addition to conventional synthetic chemistry approaches, several other methodologies can be applied for following-up natural products isolation. This chapter outlines, with specific examples, various strategies and methods involved in follow-up of natural products isolation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cannell RJP (2005) Eds: Sarker SD, Latif Z, Gray AI. Follow-up of natural product isolation. In: Natural products isolation, 2nd edn. Humana, New Jersey

    Google Scholar 

  2. Daicho K, Maruyama H, Suzuki A, Ueno M, Uritani M, Ushimaru T (2007) The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochim Biophys Acta 1768:1681–1690

    Article  PubMed  CAS  Google Scholar 

  3. Dawson MJ, Farthing JE, Marshall PS (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma I. Taxonomy, fermentation, isolation, physicochemical properties and biological activity. J Antibiot 45:639–647

    PubMed  CAS  Google Scholar 

  4. Sidebottom PJ, Highcock RM, Lane SJ, Procopiou PA, Watsom NS (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Structure elucidation. J Antibiot 45:648–658

    PubMed  CAS  Google Scholar 

  5. Blows WM, Foster G, Lanes SJ (1994) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Minor metabolites. J Antibiot 45:648–658

    Google Scholar 

  6. Jones GH (1986) Regulation of actinomycin synthesis in Streptomyces antibioticus. J Nat Prod 49:981–987

    Article  PubMed  CAS  Google Scholar 

  7. Ju J, Lim S-K, Jiang H, Shen B (2005) Migrastatin and dorrigocins are shunt metabolites of iso-migrastatin. J Am Chem Soc 127:1622–1623

    Article  PubMed  CAS  Google Scholar 

  8. van Middlesworth F, Desjardins A, Taylor S, Plattner R (1986) Trichodiene accumulation by ancymidol treatment of Gibberella pulicaris. J Chem Soc Chem Comm 1:156–1157

    Google Scholar 

  9. Jones CA, Sidebottom PJ, Cannell RJP, Noble D, Rudd BAM (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. III. Biosynthesis. J Antibiot 45:1492–1498

    PubMed  CAS  Google Scholar 

  10. Cannell RJP, Dawson MJ, Hale RS (1993) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. IV. Preparation of fluorinated squalestatins, by directed biosynthesis. J Antibiot 46:1381–1389

    PubMed  CAS  Google Scholar 

  11. Cannell RJP, Dawson MJ, Hale RS (1994) Production of additional squalestatin analogues by directed biosynthesis. J Antibiot 47:247–249

    PubMed  CAS  Google Scholar 

  12. Kusche BR, Phillips JB, Priestly ND (2009) Nonactin biosynthesis: setting limits on what can be achieved with precursor-directed biosynthesis. Biorg Med Chem Lett 19:1233–1235

    Article  CAS  Google Scholar 

  13. Bouras N, Merrouche R, Lamari L, Mathieu F, Sabaou N, Lebrihi A (2008) Precursor-directed biosynthesis of new dithiolopyrrolone analogs by Saccharothrix algeriensis NRRL B-24137. Process Biochem 43:1244–1252

    Article  CAS  Google Scholar 

  14. Wigley LJ, Mantle PG, Perry DA (2006) Natural and directed biosynthesis of communesin alkaloids. Phytochemistry 67:561–569

    Article  PubMed  CAS  Google Scholar 

  15. Kachi H, Hattori H, Sassa T (1986) A new antifungal substance, bromomonilicin, and its precursor produced by Monilinia fructicola. J Antibiot 39:164–166

    PubMed  CAS  Google Scholar 

  16. Marshall VP (1985) Microbial transformation of anthracycline antibiotics and their analogs. Dev Ind Microbiol 26:129–142

    CAS  Google Scholar 

  17. Oki T, Takatsuki Y, Tobe H, Yoshimoto A, Takeuchi T, Umezawa H (1981) Microbial conversion of daunomycin, carminomycin I and feudomycin A to adrimycin. J Antibiot 34:1229–1231

    PubMed  CAS  Google Scholar 

  18. Aszalos AA, Bachur NR, Hamilton BK (1977) Microbial reduction of the side-chain carbonyl of daunorubicin and N-acetyl daunorubicin. J Antibiot 30:50–58

    PubMed  CAS  Google Scholar 

  19. Hamilton BK, Sutphin MS, Thomas MC, Wareheim DA, Aszalos AA (1977) Microbial N-acetylation of daunorubicin and daunoribicinol. J Antibiot 30:425–426

    PubMed  CAS  Google Scholar 

  20. Blumauerova M, Kralovcova E, Mateju J, Jizba JA, Vanek Z (1979) Biotransformations of anthracyclinones in Streptomyces coeruleorubidus and Streptomyces galilaeus. Folia Microbiol 24:117–127

    Article  CAS  Google Scholar 

  21. Nakagawa K, Torikata A, Sato KA, Tsukamoto Y (1990) Microbial conversion of milbemycins: 30-oxidation of milbemycin A4 and related compounds by Amycolata autotrophica and Amycolatopsis mediterranei. J Antibiot 43:1321–1328

    PubMed  CAS  Google Scholar 

  22. Middleton RF, Foster G, Cannell RJO (1995) Novel squalestatins produced by biotransformation. J Antibiot 48:311–316

    PubMed  CAS  Google Scholar 

  23. Mahato SB, Gurai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–344

    Article  PubMed  CAS  Google Scholar 

  24. Holland HL, Nguyen DH, Person NM (1995) Biotransformation of corticosteroids by Penicillium decumbens ATCC 10436. Steroids 60:646–649

    Article  PubMed  CAS  Google Scholar 

  25. Malavia A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresource Technol 99:6725–6737

    Article  Google Scholar 

  26. Huang L-H, Li J, Xu G, Zhang X-H, Wang Y-G, Yin Y-L, Liu H-M (2010) Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids 75:1039–1046

    Article  PubMed  CAS  Google Scholar 

  27. Sripalakit P, Wichai U, Saraphanchotiwitthaya A (2006) Biotransformation of various ­natural sterols to androstenones by Mycobacterium sp. and some steroid-­converting microbial strains. J Mol Catal B: Enzymatic 41:49–54

    Article  CAS  Google Scholar 

  28. Hanson JR, Nasir H (1993) The biotransformation of some steroids by Cephalosporium aphidicola. Phytochemistry 33:831–834

    Article  CAS  Google Scholar 

  29. Leguen I, Carlsson C, Perdu-Durand E, Prunet P, Part P, Cravedi JP (2000) Xenobiotic and steroid biotransformation activities in rainbow trout gill epithelial cells in culture. Aquatic Toxicol 48:165–176

    Article  CAS  Google Scholar 

  30. Hirotani M, Furuya T (1980) Biotransformation of digitoxigenin by cell suspension cultures of Digitalis purpurea. Phytochemistry 19:531–534

    Article  CAS  Google Scholar 

  31. Al-Aboudi A, Mohammad MY, Haddad S, Al-Far R, Choudhary MI, Atta-ur-Rahman A (2009) Biotransformation of methyl cholate by Aspergillus niger. Steroids 74:483–486

    Article  PubMed  CAS  Google Scholar 

  32. Kollerov VV, Shutov AA, Fokina VV, Sukhodol’skaya GV, Donova MV (2008) Biotransformation of 3-keto-androstanes by Gongronella butleri VKM F-1033. J Mol Catal B: Enzymetic 55:61–68

    Article  CAS  Google Scholar 

  33. Changtam C, Sukcharoen O, Yingyongnarongkul B-E, Chimoni N, Suksamran A (2008) Functional group-mediated biotransformation by Curvularia lunata NRRL 2178: synthesis of 3-dehydro-2-deoxy-ecdysteroids from the 3-hydroxy-2-mesyloxy analogues. Tetrahedron 64:2626–2633

    Article  CAS  Google Scholar 

  34. Porter RBR, Gallimore WA, Reese PB (1999) Steroid transformations with Exophiala jeanselmei var. lecanii-corni and Ceratocystis paradoxa. Steroids 64:770–779

    Article  PubMed  CAS  Google Scholar 

  35. Bartmanska A, Dmochowska-Gladysz J, Huszcza E (2005) Steroids’ transformations in Penicillium notatum culture. Steroids 70:193–198

    Article  PubMed  CAS  Google Scholar 

  36. Houjin L, Wenjian L, Chuanghua C, Yipin Z, Yongcheng L (2006) Biotransformation of limonene by marine bacteria. Chin J Anal Chem 34:946–950

    Article  Google Scholar 

  37. Zhu J-J, Yu R-M, Yang L, Hu Y-S, Song L-Y, Huang Y-J, Li W-M, Guan S-X (2010) Novel biotransformation processes of dihydroartemisinic acid and artemisinic acid to their hydroxylated derivatives by two plant cell culture systems. Process Biochem 45:1652–1656

    Article  CAS  Google Scholar 

  38. Demyttenaere JCR, del Carmen-Herrera M, De Kimpe N (2000) Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry 55:363–373

    Article  PubMed  CAS  Google Scholar 

  39. Lindmark-Henriksson M, Isaksson D, Vanek T, Valterova I, Hogberg H-E, Sjodin K (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107:173–184

    Article  PubMed  CAS  Google Scholar 

  40. Chen ARM, Reese PB (2002) Biotransformation of terpenes from Stemodia maritima by Aspergillus niger ATCC 9142. Phytochemistry 59:57–62

    Article  PubMed  CAS  Google Scholar 

  41. de Carvalho CCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Advances 24:134–142

    Article  Google Scholar 

  42. Muffler K, Leipold D, Scheller M-C, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R (2011) Biotransformation of terpenes. Process Biochem 45:1–15

    Article  Google Scholar 

  43. Marostica MR Jr, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350

    Article  CAS  Google Scholar 

  44. Zhang J, Guo H, Tian Y, Liu P, Li N, Zhou J, Guo D (2007) Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68:2523–2530

    Article  PubMed  CAS  Google Scholar 

  45. Fraga BM, Hernandez MG, Gonzalez P, Lopez M, Suarez S (2001) Biotransformation of the diterpene ribenone by Mucor plumbeus. Tetrahedron 57:761–770

    Article  CAS  Google Scholar 

  46. Miyazawa M, Miyamoto Y (2005) Biotransformation of (+)-(1R)- and (−)-(1S)-fenchone by the larvae of common cutworm (Spodoptera litura). J Mol Catalysis B: Enzymatic 32:123–130

    Article  CAS  Google Scholar 

  47. Shimoda K, Kondo Y, Nishida T, Hamada H, Nakajima N, Hamada H (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261

    Article  PubMed  CAS  Google Scholar 

  48. Baltz RH, Hosted TJ (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol 14:245–250

    Article  PubMed  CAS  Google Scholar 

  49. Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279

    Article  PubMed  CAS  Google Scholar 

  50. Hutchinson CR (1998) Combinatorial biosynthesis for new drug discovery. Current Opinion Microbiol 1:319–329

    Article  CAS  Google Scholar 

  51. Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss HG, Omura S (1985) Production of “hybrid” antibiotics by genetic engineering. Nature 314:642–644

    Article  PubMed  CAS  Google Scholar 

  52. Floss HG (2006) Combinatorial biosyenmthesis – potential or problems. J Biotechnol 124:242–257

    Article  PubMed  CAS  Google Scholar 

  53. Staunton J, Wilkinson B (2001) Combinatorial biosynthesis of polyketides and nonribosomal peptides. Curr Opin Chem Biol 5:159–164

    Article  PubMed  CAS  Google Scholar 

  54. Walsh CT (2002) Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chem Bio Chem 3:124–134

    CAS  Google Scholar 

  55. Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tayloring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580

    Article  PubMed  CAS  Google Scholar 

  56. Reeves CD (2003) The enzymology of combinatorial biosynthesis. Rev Biotechnol 23:95–147

    Article  CAS  Google Scholar 

  57. Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245

    Article  PubMed  CAS  Google Scholar 

  58. Horinouchi S (2009) Combinatorial biosynthesis of plant medicinal polyketoides by microorganisms. Curr Opin Chem Biol 13:197–204

    Article  PubMed  CAS  Google Scholar 

  59. Basnet DB, Park JW, Yoon YJ (2008) Combinatorial biosynthesis of 5-O-desosaminyl erythronolide A as a potent precursor of ketolide antibiotics. J Biotechnol 135:92–96

    Article  PubMed  CAS  Google Scholar 

  60. Nielsen J (2002) Combinatorial synthesis of natural products. Curr Opin Chem Biol 6:297–305

    Article  PubMed  CAS  Google Scholar 

  61. Davies HG, Green RH, Kelly DR, Roberts SM (1989) Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole cell systems in synthesis. Academic, London

    Google Scholar 

  62. Wessjohann LA (2000) Synthesis of natural products based compound libraries. Curr Opin Chem Biol 4:303–309

    Article  PubMed  CAS  Google Scholar 

  63. Ganesan A (2004) Natural products as a hunting ground for combinatorial chemistry. Curr Opin Biotechnol 15:584–590

    Article  PubMed  CAS  Google Scholar 

  64. Poulsen S-A, Davis RA, Keys TG (2006) Screening a natural product-based combinatorial library using FTICR mass spectrometry. Bioorg Med Chem 14:510–515

    Article  PubMed  CAS  Google Scholar 

  65. Abel U, Koch C, Speitling M, Hansske FG (2002) Modern methods to produce natural products library. Curr Opin Chem Biol 6:453–458

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura S-I (2001) Combinatorial syntheses of sugar derivatives. Curr Opin Chem Biol 5:325–335

    Article  PubMed  CAS  Google Scholar 

  67. Boldi AM (2004) Libraries from natural product like scaffolds. Curr Opin Chem Biol 8:281–286

    Article  PubMed  CAS  Google Scholar 

  68. Atuegbu A, Maclean D, Nguyen C, Gordon EM, Jacobs JW (1996) Combinatorial modification of natural products: preparation of unencoded and encoded libraries of Rauwolfia alkaloids. Bioorg Med Chem 4:1097–1106

    Article  PubMed  CAS  Google Scholar 

  69. Mink D, Mecozzi S, Rebek J Jr (1998) Natural products analogs as scaffolds for supramolecular and combinatorial chemistry. Tetrahedron Lett 39:5709–5712

    Article  CAS  Google Scholar 

  70. Edwards P (2007) Recent developments in screening natural product combinatorial libraries. Drug Discov Today 12:585–586

    Article  Google Scholar 

  71. Luesse SB, Wells G, Nayek A, Smith AE, Kusche BR, Bergmeier SC, McMills MC, Priestley ND, Wright DL (2008) Natural products in parallel synthesis: triazole libraries of nonactic acid. Biorg Med Chem 18:3946–3949

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit D. Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cannell, R.J.P., Sarker, S.D., Nahar, L. (2012). Follow-Up of Natural Products Isolation. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics