Skip to main content

Dietary and Lifestyle Factors of DNA Methylation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Lifestyle factors, such as diet, smoking, physical activity, and body weight management, are known to constitute the majority of cancer causes. Epigenetics has been widely proposed as a main mechanism that mediates the reversible effects of dietary and lifestyle factors on carcinogenesis. This chapter reviews human studies on potential dietary and lifestyle determinants of DNA methylation. Apart from a few prospective investigations and interventions of limited size and duration, evidence mostly comes from cross-sectional observational studies and supports some associations. Studies to date suggest that certain dietary components may alter genomic and gene-specific DNA methylation levels in systemic and target tissues, affecting genomic stability and transcription of tumor suppressors and oncogenes. Most data and supportive evidence exist for folate, a key nutritional factor in one-carbon metabolism that supplies the methyl units for DNA methylation. Other candidate bioactive food components include alcohol and other key nutritional factors of one-carbon metabolism, polyphenols and flavonoids in green tea, phytoestrogen, and lycopene. Some data also support a link of DNA methylation with physical activity and energy balance. Effects of dietary and lifestyle exposures on DNA methylation may be additionally modified by common genetic variants, environmental carcinogens, and infectious agents, an aspect that remains largely unexplored. In addition, growing literature supports that the environmental conditions during critical developmental stages may influence later risk of metabolic disorders in part through persistent programming of DNA methylation. Further research of these modifiable determinants of DNA methylation will improve our understanding of cancer etiology and may present certain DNA methylation markers as attractive surrogate endpoints for prevention research. Considering the plasticity of epigenetic marks and correlated nature of lifestyle factors, more longitudinal studies of healthy individuals of varying age, sex, and ethnic groups are warranted, ideally with comprehensive data collection on various lifestyle factors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Doll, R., and Peto, R. (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today, J.Natl.Cancer Inst. 66, 1191–1308.

    PubMed  CAS  Google Scholar 

  2. Danaei, G., Ding, E. L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C. J., and Ezzati, M. (2009) The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors, PLoS Med 6, e1000058.

    Article  PubMed  Google Scholar 

  3. Choi, S. W., Corrocher, R., and Friso, S. (2009) Nutrients and DNA methylation, In Nutrients and Epigenetics (Choi, S. W., and Friso, S., Eds.), CRC Press Taylor & Francis Group, Boca Raton, FL.

    Google Scholar 

  4. Laird, P. W. (2003) The power and the promise of DNA methylation markers, Nat Rev Cancer 3, 253–266.

    Article  PubMed  CAS  Google Scholar 

  5. Fraga, M. F., Rodriguez, R., and Canal, M. J. (2000) Rapid quantification of DNA methylation by high performance capillary electrophoresis, Electrophoresis 21, 2990–2994.

    Article  PubMed  CAS  Google Scholar 

  6. Friso, S., Choi, S. W., Dolnikowski, G. G., and Selhub, J. (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry, Anal Chem 74, 4526–4531.

    Article  PubMed  CAS  Google Scholar 

  7. Song, L., James, S. R., Kazim, L., and Karpf, A. R. (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry, Anal Chem 77, 504–510.

    Article  PubMed  CAS  Google Scholar 

  8. Karimi, M., Johansson, S., Stach, D., Corcoran, M., Grander, D., Schalling, M., Bakalkin, G., Lyko, F., Larsson, C., and Ekstrom, T. J. (2006) LUMA (LUminometric Methylation Assay)—a high throughput method to the analysis of genomic DNA methylation, Exp Cell Res 312, 1989–1995.

    Article  PubMed  CAS  Google Scholar 

  9. Balaghi, M., and Wagner, C. (1993) DNA methylation in folate deficiency: use of CpG methylase, Biochem Biophys Res Commun 193, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  10. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J. C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R. H., Wilson, R. K., Hillier, L. W., McPherson, J. D., Marra, M. A., Mardis, E. R., Fulton, L. A., Chinwalla, A. T., Pepin, K. H., Gish, W. R., Chissoe, S. L., Wendl, M. C., Delehaunty, K. D., Miner, T. L., Delehaunty, A., Kramer, J. B., Cook, L. L., Fulton, R. S., Johnson, D. L., Minx, P. J., Clifton, S. W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J. F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R. A., Muzny, D. M., Scherer, S. E., Bouck, J. B., Sodergren, E. J., Worley, K. C., Rives, C. M., Gorrell, J. H., Metzker, M. L., Naylor, S. L., Kucherlapati, R. S., Nelson, D. L., Weinstock, G. M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D. R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H. M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R. W., Federspiel, N. A., Abola, A. P., Proctor, M. J., Myers, R. M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D. R., Olson, M. V., Kaul, R., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G. A., Athanasiou, M., Schultz, R., Roe, B. A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W. R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti, L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy, S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp, D., Lancet, D., Lowe, T. M., McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J., Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P., Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wetterstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J., Osoegawa, K., Shizuya, H., Choi, S., and Chen, Y. J. (2001) Initial sequencing and analysis of the human genome, Nature 409, 860–921.

    Google Scholar 

  11. Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., and Bestor, T. H. (2006) Large-scale structure of genomic methylation patterns, Genome Res 16, 157–163.

    Article  PubMed  CAS  Google Scholar 

  12. Irahara, N., Nosho, K., Baba, Y., Shima, K., Lindeman, N. I., Hazra, A., Schernhammer, E. S., Hunter, D. J., Fuchs, C. S., and Ogino, S. (2010) Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells, J Mol Diagn 12, 177–183.

    Article  PubMed  CAS  Google Scholar 

  13. Weisenberger, D. J., Campan, M., Long, T. I., Kim, M., Woods, C., Fiala, E., Ehrlich, M., and Laird, P. W. (2005) Analysis of repetitive element DNA methylation by MethyLight, Nucleic Acids Res. 33, 6823–6836.

    Article  PubMed  CAS  Google Scholar 

  14. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc Natl Acad Sci U S A 93, 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  15. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. (2000) MethyLight: a high-throughput assay to measure DNA methylation, Nucleic Acids Res. 28, E32.

    Article  PubMed  CAS  Google Scholar 

  16. Ehrich, M., Nelson, M. R., Stanssens, P., Zabeau, M., Liloglou, T., Xinarianos, G., Cantor, C. R., Field, J. K., and van den Boom, D. (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry, Proc Natl Acad Sci U S A 102, 15785–15790.

    Article  PubMed  CAS  Google Scholar 

  17. Coolen, M. W., Statham, A. L., Gardiner-Garden, M., and Clark, S. J. (2007) Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements, Nucleic Acids Res 35, e119.

    Article  PubMed  Google Scholar 

  18. Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., Slagboom, P. E., and Lumey, L. H. (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc.Natl.Acad.Sci.U.S.A 105, 17046–17049.

    Article  PubMed  CAS  Google Scholar 

  19. Zilberman, D., and Henikoff, S. (2007) Genome-wide analysis of DNA methylation patterns, Development 134, 3959–3965.

    Article  PubMed  CAS  Google Scholar 

  20. Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., Doucet, D., Thomas, N. J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D. L., Chee, M. S., Floros, J., and Fan, J. B. (2006) High-throughput DNA methylation profiling using universal bead arrays, Genome Res 16, 383–393.

    Article  PubMed  CAS  Google Scholar 

  21. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., Sanchez-Aguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y. Z., Plass, C., and Esteller, M. (2005) Epigenetic differences arise during the lifetime of monozygotic twins, Proc.Natl.Acad.Sci.U.S.A 102, 10604–10609.

    Article  PubMed  CAS  Google Scholar 

  22. Heijmans, B. T., Kremer, D., Tobi, E. W., Boomsma, D. I., and Slagboom, P. E. (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus, Hum.Mol.Genet. 16, 547–554.

    Article  PubMed  CAS  Google Scholar 

  23. Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H., Yu, W., Rongione, M. A., Ekstrom, T. J., Harris, T. B., Launer, L. J., Eiriksdottir, G., Leppert, M. F., Sapienza, C., Gudnason, V., and Feinberg, A. P. (2008) Intra-individual change over time in DNA methylation with familial clustering, JAMA 299, 2877–2883.

    Article  PubMed  CAS  Google Scholar 

  24. Talens, R. P., Boomsma, D. I., Tobi, E. W., Kremer, D., Jukema, J. W., Willemsen, G., Putter, H., Slagboom, P. E., and Heijmans, B. T. (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology, FASEB J 24, 3135–3144.

    Article  PubMed  CAS  Google Scholar 

  25. Sandovici, I., Leppert, M., Hawk, P. R., Suarez, A., Linares, Y., and Sapienza, C. (2003) Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions, Hum Mol Genet 12, 1569–1578.

    Article  PubMed  CAS  Google Scholar 

  26. Keyes, M. K., Jang, H., Mason, J. B., Liu, Z., Crott, J. W., Smith, D. E., Friso, S., and Choi, S. W. (2007) Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon, J Nutr 137, 1713–1717.

    PubMed  CAS  Google Scholar 

  27. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., Nelson, H. H., Karagas, M. R., Padbury, J. F., Bueno, R., Sugarbaker, D. J., Yeh, R. F., Wiencke, J. K., and Kelsey, K. T. (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context, PLoS Genet 5, e1000602.

    Article  PubMed  Google Scholar 

  28. Jintaridth, P., and Mutirangura, A. (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences, Physiol Genomics.

    Google Scholar 

  29. Zhu, Z. Z., Hou, L., Bollati, V., Tarantini, L., Marinelli, B., Cantone, L., Yang, A. S., Vokonas, P., Lissowska, J., Fustinoni, S., Pesatori, A. C., Bonzini, M., Apostoli, P., Costa, G., Bertazzi, P. A., Chow, W. H., Schwartz, J., and Baccarelli, A. (2010) Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis, Int J Epidemiol.

    Google Scholar 

  30. El-Maarri, O., Becker, T., Junen, J., Manzoor, S. S., Diaz-Lacava, A., Schwaab, R., Wienker, T., and Oldenburg, J. (2007) Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males, Hum Genet 122, 505–514.

    Article  PubMed  CAS  Google Scholar 

  31. Terry, M. B., Ferris, J. S., Pilsner, R., Flom, J. D., Tehranifar, P., Santella, R. M., Gamble, M. V., and Susser, E. (2008) Genomic DNA methylation among women in a multiethnic New York City birth cohort, Cancer Epidemiol.Biomarkers Prev. 17, 2306–2310.

    Article  PubMed  CAS  Google Scholar 

  32. Figueiredo, J. C., Grau, M. V., Wallace, K., Levine, A. J., Shen, L., Hamdan, R., Chen, X., Bresalier, R. S., McKeown-Eyssen, G., Haile, R. W., Baron, J. A., and Issa, J. P. (2009) Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors, Cancer Epidemiol Biomarkers Prev 18, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  33. Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., Henning, S. M., and Swendseid, M. E. (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women, J Nutr 128, 1204–1212.

    PubMed  CAS  Google Scholar 

  34. Rampersaud, G. C., Kauwell, G. P., Hutson, A. D., Cerda, J. J., and Bailey, L. B. (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women, Am J Clin Nutr 72, 998–1003.

    PubMed  CAS  Google Scholar 

  35. Pufulete, M., Al Ghnaniem, R., Khushal, A., Appleby, P., Harris, N., Gout, S., Emery, P. W., and Sanders, T. A. (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma, Gut 54, 648–653.

    Article  PubMed  CAS  Google Scholar 

  36. Choi, J. Y., James, S. R., Link, P. A., McCann, S. E., Hong, C. C., Davis, W., Nesline, M. K., Ambrosone, C. B., and Karpf, A. R. (2009) Association between global DNA hypomethylation in leukocytes and risk of breast cancer, Carcinogenesis 30, 1889–1897.

    Article  PubMed  CAS  Google Scholar 

  37. Cravo, M. L., Pinto, A. G., Chaves, P., Cruz, J. A., Lage, P., Nobre Leitao, C., and Costa Mira, F. (1998) Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake, Clin Nutr 17, 45–49.

    Article  PubMed  CAS  Google Scholar 

  38. Pufulete, M., Al Ghnaniem, R., Rennie, J. A., Appleby, P., Harris, N., Gout, S., Emery, P. W., and Sanders, T. A. (2005) Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer, Br.J.Cancer 92, 838–842.

    Article  PubMed  CAS  Google Scholar 

  39. Schernhammer, E. S., Giovannucci, E., Kawasaki, T., Rosner, B., Fuchs, C. S., and Ogino, S. (2010) Dietary folate, alcohol and B vitamins in relation to LINE-1 hypomethylation in colon cancer, Gut 59, 794–799.

    Article  PubMed  CAS  Google Scholar 

  40. Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Chan, A. T., Schernhammer, E. S., Giovannucci, E. L., and Fuchs, C. S. (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer, J Natl Cancer Inst 100, 1734–1738.

    Article  PubMed  CAS  Google Scholar 

  41. Friso, S., Choi, S. W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., Olivieri, O., Jacques, P. F., Rosenberg, I. H., Corrocher, R., and Selhub, J. (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status, Proc Natl Acad Sci U S A 99, 5606–5611.

    Article  PubMed  CAS  Google Scholar 

  42. Paz, M. F., Avila, S., Fraga, M. F., Pollan, M., Capella, G., Peinado, M. A., Sanchez-Cespedes, M., Herman, J. G., and Esteller, M. (2002) Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors, Cancer Res 62, 4519–4524.

    PubMed  CAS  Google Scholar 

  43. van Engeland, M., Weijenberg, M. P., Roemen, G. M., Brink, M., de Bruine, A. P., Goldbohm, R. A., van den Brandt, P. A., Baylin, S. B., de Goeij, A. F., and Herman, J. G. (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer, Cancer Res 63, 3133–3137.

    PubMed  Google Scholar 

  44. Vineis, P., Chuang, S. C., Vaissiere, T., Cuenin, C., Ricceri, F., Johansson, M., Ueland, P., Brennan, P., and Herceg, Z. (2011) DNA methylation changes associated with cancer risk factors and blood levels of vitamin metabolites in a prospective study, Epigenetics 6.

    Google Scholar 

  45. Vaissiere, T., Hung, R. J., Zaridze, D., Moukeria, A., Cuenin, C., Fasolo, V., Ferro, G., Paliwal, A., Hainaut, P., Brennan, P., Tost, J., Boffetta, P., and Herceg, Z. (2009) Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors, Cancer Res 69, 243–252.

    Article  PubMed  CAS  Google Scholar 

  46. Yuasa, Y., Nagasaki, H., Akiyama, Y., Sakai, H., Nakajima, T., Ohkura, Y., Takizawa, T., Koike, M., Tani, M., Iwai, T., Sugihara, K., Imai, K., and Nakachi, K. (2005) Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients, Carcinogenesis 26, 193–200.

    Article  PubMed  CAS  Google Scholar 

  47. Yuasa, Y., Nagasaki, H., Akiyama, Y., Hashimoto, Y., Takizawa, T., Kojima, K., Kawano, T., Sugihara, K., Imai, K., and Nakachi, K. (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients, Int J Cancer 124, 2677–2682.

    Article  PubMed  CAS  Google Scholar 

  48. Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., and Yang, C. S. (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines, Cancer Res 63, 7563–7570.

    PubMed  CAS  Google Scholar 

  49. Lee, W. J., Shim, J. Y., and Zhu, B. T. (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids, Mol Pharmacol 68, 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  50. Dolinoy, D. C., Weidman, J. R., Waterland, R. A., and Jirtle, R. L. (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome, Environ Health Perspect 114, 567–572.

    Article  PubMed  CAS  Google Scholar 

  51. King-Batoon, A., Leszczynska, J. M., and Klein, C. B. (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells, Environ Mol Mutagen 49, 36–45.

    Article  PubMed  CAS  Google Scholar 

  52. Nakajima, K., Takeoka, M., Mori, M., Hashimoto, S., Sakurai, A., Nose, H., Higuchi, K., Itano, N., Shiohara, M., Oh, T., and Taniguchi, S. (2010) Exercise effects on methylation of ASC gene, Int J Sports Med 31, 671–675.

    Article  PubMed  CAS  Google Scholar 

  53. Alibegovic, A. C., Sonne, M. P., Hojbjerre, L., Bork-Jensen, J., Jacobsen, S., Nilsson, E., Faerch, K., Hiscock, N., Mortensen, B., Friedrichsen, M., Stallknecht, B., Dela, F., and Vaag, A. (2010) Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men, Am J Physiol Endocrinol Metab 299, E752–763.

    Article  PubMed  CAS  Google Scholar 

  54. Gemma, C., Sookoian, S., Dieuzeide, G., Garcia, S. I., Gianotti, T. F., Gonzalez, C. D., and Pirola, C. J. (2010) Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents, Mol Genet Metab 100, 83–87.

    Article  PubMed  CAS  Google Scholar 

  55. Lim, U., Flood, A., Choi, S. W., Albanes, D., Cross, A. J., Schatzkin, A., Sinha, R., Katki, H. A., Cash, B., Schoenfeld, P., and Stolzenberg-Solomon, R. (2008) Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women, Gastroenterology 134, 47–55.

    Article  PubMed  Google Scholar 

  56. Mathers, J. C., Strathdee, G., and Relton, C. L. (2010) Induction of epigenetic alterations by dietary and other environmental factors, Adv Genet 71, 3–39.

    Article  PubMed  Google Scholar 

  57. Limsui, D., Vierkant, R. A., Tillmans, L. S., Wang, A. H., Weisenberger, D. J., Laird, P. W., Lynch, C. F., Anderson, K. E., French, A. J., Haile, R. W., Harnack, L. J., Potter, J. D., Slager, S. L., Smyrk, T. C., Thibodeau, S. N., Cerhan, J. R., and Limburg, P. J. (2010) Cigarette smoking and colorectal cancer risk by molecularly defined subtypes, J Natl Cancer Inst 102, 1012–1022.

    Article  PubMed  CAS  Google Scholar 

  58. Friso, S., Lamon-Fava, S., Jang, H., Schaefer, E. J., Corrocher, R., and Choi, S. W. (2007) Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women, Br J Nutr 97, 617–621.

    Article  PubMed  CAS  Google Scholar 

  59. Wu, A. H., Siegmund, K. D., Long, T. I., Cozen, W., Wan, P., Tseng, C. C., Shibata, D., and Laird, P. W. (2010) Hormone therapy, DNA methylation and colon cancer, Carcinogenesis 31, 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  60. Pavanello, S., Bollati, V., Pesatori, A. C., Kapka, L., Bolognesi, C., Bertazzi, P. A., and Baccarelli, A. (2009) Global and gene-specific promoter methylation changes are related to anti-B(a)PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals, Int J Cancer 125, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  61. Hales, C. N., and Barker, D. J. (2001) The thrifty phenotype hypothesis, Br Med Bull 60, 5–20.

    Article  PubMed  CAS  Google Scholar 

  62. Ravelli, G. P., Stein, Z. A., and Susser, M. W. (1976) Obesity in young men after famine exposure in utero and early infancy, N Engl J Med 295, 349–353.

    Article  PubMed  CAS  Google Scholar 

  63. Ravelli, A. C., van Der Meulen, J. H., Osmond, C., Barker, D. J., and Bleker, O. P. (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally, Am J Clin Nutr 70, 811–816.

    PubMed  CAS  Google Scholar 

  64. Roseboom, T. J., van der Meulen, J. H., Ravelli, A. C., Osmond, C., Barker, D. J., and Bleker, O. P. (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview, Twin Res 4, 293–298.

    PubMed  CAS  Google Scholar 

  65. Painter, R. C., De Rooij, S. R., Bossuyt, P. M., Osmond, C., Barker, D. J., Bleker, O. P., and Roseboom, T. J. (2006) A possible link between prenatal exposure to famine and breast cancer: a preliminary study, Am J Hum Biol 18, 853–856.

    Article  PubMed  CAS  Google Scholar 

  66. Painter, R. C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D. I., and Roseboom, T. J. (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life, BJOG 115, 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  67. Lussana, F., Painter, R. C., Ocke, M. C., Buller, H. R., Bossuyt, P. M., and Roseboom, T. J. (2008) Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile, Am J Clin Nutr 88, 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  68. Waterland, R. A., and Michels, K. B. (2007) Epigenetic epidemiology of the developmental origins hypothesis, Annu.Rev.Nutr. 27, 363–388.

    Article  PubMed  CAS  Google Scholar 

  69. Gluckman, P. D., Hanson, M. A., Cooper, C., and Thornburg, K. L. (2008) Effect of in utero and early-life conditions on adult health and disease, N Engl J Med 359, 61–73.

    Article  PubMed  CAS  Google Scholar 

  70. Waterland, R. A., and Garza, C. (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease, Am J Clin Nutr 69, 179–197.

    PubMed  CAS  Google Scholar 

  71. Tobi, E. W., Lumey, L. H., Talens, R. P., Kremer, D., Putter, H., Stein, A. D., Slagboom, P. E., and Heijmans, B. T. (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific, Hum Mol Genet 18, 4046–4053.

    Article  PubMed  CAS  Google Scholar 

  72. Tobi, E. W., Heijmans, B. T., Kremer, D., Putter, H., Delemarre-van de Waal, H. A., Finken, M. J., Wit, J. M., and Slagboom, P. E. (2011) DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age, Epigenetics 6.

    Google Scholar 

  73. Steegers-Theunissen, R. P., Obermann-Borst, S. A., Kremer, D., Lindemans, J., Siebel, C., Steegers, E. A., Slagboom, P. E., and Heijmans, B. T. (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child, PLoS One 4, e7845.

    Article  PubMed  Google Scholar 

  74. Gemma, C., Sookoian, S., Alvarinas, J., Garcia, S. I., Quintana, L., Kanevsky, D., Gonzalez, C. D., and Pirola, C. J. (2009) Maternal Pregestational BMI Is Associated With Methylation of the PPARGC1A Promoter in Newborns, Obesity.(Silver.Spring).

    Google Scholar 

  75. Lim, U., Wang, S. S., Hartge, P., Cozen, W., Kelemen, L. E., Chanock, S., Davis, S., Blair, A., Schenk, M., Rothman, N., and Lan, Q. (2007) Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case-control study, Blood 109, 3050–3059.

    PubMed  CAS  Google Scholar 

  76. Shane, B. (2000) Folic Acid, Vitamin B12, and Vitamin B6, In Biochemical and physiological aspects of human nutrition (Stipanuk, M. H., Ed.), pp 453–518, W.B. Saunders Company, Philadelphia.

    Google Scholar 

  77. Choi, S. W., and Mason, J. B. (2000) Folate and carcinogenesis: an integrated scheme, J Nutr 130, 129–132.

    PubMed  CAS  Google Scholar 

  78. Bailey, L. B. (1995) Folate in health and disease, Marcel Dekker, Inc., New York.

    Google Scholar 

  79. Institute of Medicine. (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline, National Academy Press, Washington, DC.

    Google Scholar 

  80. Stover, P. J., and Garza, C. (2006) Nutrition and developmental biology--implications for public health, Nutr Rev 64, S60-71; discussion S72–91.

    Google Scholar 

  81. Kelemen, L. E. (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander?, Int.J.Cancer 119, 243–250.

    Article  PubMed  CAS  Google Scholar 

  82. Zhao, R., Matherly, L. H., and Goldman, I. D. (2009) Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues, Expert Rev Mol Med 11, e4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unhee Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lim, U., Song, MA. (2012). Dietary and Lifestyle Factors of DNA Methylation. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics