Advertisement

ISSR: A Reliable and Cost-Effective Technique for Detection of DNA Polymorphism

  • Maryam SarwatEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 862)

Abstract

With the emergence of more and more molecular markers as useful tools in plethora of population genetic and phylogenetic studies, choice of marker system for a particular study has become mind boggling. These marker systems differ in their advantages and disadvantages, so it is imperative to keep in mind all the pros and cons of the technique while selecting one for the problem to be addressed.

Here, we have shed light on the ISSR (intersimple sequence repeat) technique, as a marker of choice if one wants to go for properties such as reliability, simplicity, cost effectiveness, and speed, in addition to assessing genetic diversity between closely related individuals. We have outlined here the whole methodology of this technique with an example of Tribulus terrestris as case study.

Key words

DNA markers ISSR AFLP Tribulus terrestris DNA fingerprinting 

Abbreviations

AFLP

Amplified fragment length polymorphism

AP-PCR

Arbitrarily primed PCR

BSA

Bulk segregant analysis

CAPS

Cleaved amplified polymorphic sequences

DAF

DNA amplification fingerprinting

IRAP

Inter-retrotransposon amplified polymorphism

ISSR

Intersimple sequence repeats

RAPD

Random amplification of polymorphic DNA

REMAP

Retro-transposon-microsatellite amplified polymorphism

RFLP

Restriction fragment length polymorphism

SAMPL

Selectively amplified microsatellite polymorphic loci

SCAR

Sequence characterized amplified region

SRAP

Sequence-related amplified polymorphism

SSAP

Sequence-specific amplification polymorphism

Notes

Acknowledgment

The research work on T. terrestris is funded by a Department of Biotechnology, Government of India grant.

References

  1. 1.
    Sarwat, M., Nabi, G., Das, S., and Srivastava, P. S. (2011) Molecular Markers in Medicinal Plant Biotechnology: Past and Present. Critical Rev Biotech (In press)  doi:10.3109/07388551.2011.551872.
  2. 2.
    Gupta, P. K., Rustgi, S., and Mir, R. R. (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101: 5–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones, N., Ougham, H., Thomas, H., and Pašakinskienė, I. (2009) Markers and mapping revisited: finding your gene. New Phytologist 183: 935–966.PubMedCrossRefGoogle Scholar
  4. 4.
    Arif, I.A., Bakir, M. A., Khan, H. A., Al Farhan, A. H., Al Homaidan, A. A., Bahkali, A. H., Al Sadoon, M., and Shobrak, M. (2010) A Brief Review of Molecular Techniques to Assess Plant Diversity. Int J Mol Sci 11, 2079–2096.PubMedCrossRefGoogle Scholar
  5. 5.
    Rahman, M. H., Dayanandan, S., and Rajora, O. P. (2000) Microsatellite DNA markers in Populus tremuloides. Genome 43, 293297.PubMedGoogle Scholar
  6. 6.
    Hayden, M. J., and Sharp, P. J. (2001) Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Res 29: e44.PubMedCrossRefGoogle Scholar
  7. 7.
    Chambers, G. K., and Mac Avoy, E. S. (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol 126, 455–476.CrossRefGoogle Scholar
  8. 8.
    Röder, M. S., Plaschke, J., König, U., Börner, A., Sorrells, M., Tanksley, S. D., and Ganal, M. W. (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246, 327–333.PubMedCrossRefGoogle Scholar
  9. 9.
    Cordeiro, G. M., Pan, Y-B., and Henry, R. J. (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane gemplasm. Plant Sci 165 181–189.CrossRefGoogle Scholar
  10. 10.
    Zane, L., Bargelloni, L., and Pacarnello, T. (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11: 1–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Squirrel, J., Hollingsworth, P. M., Woodhead, M., Russell, A., Lowe, A. J., Gibby, M., and Powell, W. (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12, 1339–1348.CrossRefGoogle Scholar
  12. 12.
    Zietkiewicz, E., Rafalski, A., and Labuda, D. (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.PubMedCrossRefGoogle Scholar
  13. 13.
    Leroy, X. J., Leon, K., and Branchard, M. (2000) Plant genomic instability detected by microsatellite-primers. E J Biotech 3 No. 2, issue of Aug. 15 http://www
  14. 14.
    Yuan, X. F., Dai, Z. H., Wang, X. D., and Zhao, B. (2009) Assessment of genetic stability in tissue-cultured products and seedlings of Saussurea involucrata by RAPD and ISSR markers. Biotechnol Lett 31, 127987.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, F., Lv, Y., Dong, H., and Guo, S. (2010) Analysis of genetic stability through intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus Hayata, a medicinal plant. Biol Pharm Bull 33, 3848.PubMedCrossRefGoogle Scholar
  16. 16.
    Lata, H., Chandra, S., Techen, N., Khan, I. A., ElSohly, M. A. (2010) Assessment of the genetic stability of micropropagated plants of Cannabis sativa by ISSR markers. Planta Med 76, 97100.PubMedCrossRefGoogle Scholar
  17. 17.
    Ammiraju, J. S. S., Dholakia, B. B., Santra, D. K., Singh, H., Lagu, M. D., Tamhankar, S. A., Dhaliwal, H. S., Rao, V. S., Gupta, V. S., and Ranjekar, P. K. (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102, 726–732.CrossRefGoogle Scholar
  18. 18.
    Marczewski, W., Hennig, J., and Gebhardt, C. (2002) The potato virus S resistance gene Ns maps to potato chromosome VIII. Theor Appl Genet 105, 564–567.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagaraju, J., Kathirvel, M., Kumar, R.R., Siddiq, E. A., and Hasnain, S. E. (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci USA 99, 5836–5841.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin, X. C., Lou, Y. F, Liu, J., Peng, J. S., Liao, G. L., Fang, W. (2010) Crossbreeding of Phyllostachys species (Poaceae) and identification of their hybrids using ISSR markers. Genet Mol Res 9, 1398404.PubMedCrossRefGoogle Scholar
  21. 21.
    Paris, H. S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tzuri, G., and Katzir, N. (2003) Assessment of genetic relationships in Cucurbita pepo (cucurbitaceae) using DNA markers. Theor Appl Genet 106, 971–978.PubMedGoogle Scholar
  22. 22.
    Han, Y., and Wang, H. Y. (2010) Genetic diversity and phylogenetic relationships of two closely related northeast China Vicia species revealed with RAPD and ISSR markers. Biochem Genet 48, 385–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Rajwade, A. V., Arora, R. S., Kadoo, N. Y., Harsulkar, A. M., Ghorpade, P. B., and Gupta, V. S. (2010) Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol 45, 16170.PubMedCrossRefGoogle Scholar
  24. 24.
    Tamhankar, S., Ghate, V., Raut, A., and Rajput, B. (2009) Molecular profiling of “Chirayat” complex using Inter Simple Sequence Repeat (ISSR) markers. Planta Med 75, 126670.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu, Y., Shi, H. M., Bao, Z., Wang, M. Y., Tu, P. F., and Li, X. B. (2010) Application of molecular markers in predicting production quality of cultivated Cistanche deserticola. Biol Pharm Bull 33, 3349.PubMedCrossRefGoogle Scholar
  26. 26.
    Goulão, L., and Oliveira, C. M. (2001) Molecular characterisation of cultivars of apple (Malus×domestica Borkh.) using microsatellite (SSR, ISSR) markers. Euphytica 122, 81–89.CrossRefGoogle Scholar
  27. 27.
    Souframanien, J., and Gopalakrishna, T. (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109, 1687–1693.PubMedCrossRefGoogle Scholar
  28. 28.
    Awasthi, A. K., Nagaraja, G. M., Naik, G. V., Kanginakudru, S., Thangavelu, K., and Nagaraju, J. (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genetics 5: 1 http://biomedcentral.com/1471-2156/5/1
  29. 29.
    Baranger, A., Aubert, G., Arnau, G., Lainé, A. L., Deniot, G., Potier, J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., and Burstin, J. (2004) Genetic diversity within Pisum sativum using protein and PCR-based markers. Theor Appl Genet 108, 1309–1321. PubMedCrossRefGoogle Scholar
  30. 30.
    Gulsen, O., Sever-Mutlu, S., Mutlu, N., Tuna, M., Karaguzel, O., Shearman, R. C., Riordan, T. P., and Heng-Moss, T. M. (2009) Polyploidy creates higher diversity among Cynodon accessions as assessed by molecular markers. Theor Appl Genet 118, 130919.PubMedCrossRefGoogle Scholar
  31. 31.
    Geleta, M., and Bryngelsson, T., (2009) Inter simple sequence repeat (ISSR) based analysis of genetic diversity of Lobelia rhynchopetalum (Campanulaceae). Hereditas 146, 12230.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu, Z., Leng, C., Tao, Z., Wei, Y., and Jiang, C. (2009) (Genetic diversity of Dioscorea alata based on ISSR analysis) Zhongguo Zhong Yao Za Zhi 34, 3017–3020.Google Scholar
  33. 33.
    Carvalho, A., Lima-Brito, J., Ma, Ã. Ã. B., and Guedes-Pinto, H. (2009) Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochem Genet 47, 27694.PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas, K.G., and Bebeli, P. J. (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylogenet Evol 56, 951–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Narzary, D., Rana, T. S., and Ranade, S. A. (2010) Genetic diversity in inter-simple sequence repeat profiles across natural populations of Indian pomegranate (Punica granatum L.). Plant Biol 12, 806–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Reunova, G. D., Kats, I. L., Muzarok, T. I., and Zhuravlev, I. N. (2010) (Polymorphism of RAPD, ISSR and AFLP markers of the Panax ginseng C. A. Meyer (Araliaceae) genome). Genetika 46:1057–1066.PubMedGoogle Scholar
  37. 37.
    Song, Z., Li, X., Wang, H., and Wang, J. (2010) Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138, 2419.PubMedCrossRefGoogle Scholar
  38. 38.
    Sarwat, M. (2010) AFLP, SAMPL, ISSR and RAPD Markers for the Assessment of Genetic Diversity within the Medicinal Herb Tribulus terrestris. In: 10th Indo-Pacific Congress on Legal Medicine and Forensic Science (INPALMS), October 25–30, 2010, AMITY University, NOIDA. pp 64–65.Google Scholar
  39. 39.
    Sarwat, M., Das, S., and Srivastava, P. S. (2011). Estimation of Genetic Diversity and Evaluation of Relatedness through Molecular Markers among Medicinally Important Trees: Terminalia arjuna, T. chebula and T. bellerica. Mol Bio Rep (In press).Google Scholar
  40. 39.
    Sarwat, M., Das, S., and Srivastava, P.S. (2011) A Comparison of the AFLP and SAMPL Molecular Markers in Characterizing Genetic Diversity of Terminalia arjuna- the Backbone of Tasar Silk Industry. Plant Systemat Evol 293, 13–23.Google Scholar
  41. 40.
    Sarwat, M., Das, S., and Srivastava, P. S. (2005a) Genetic diversity analysis of Terminalia species through AFLP and SAMPL. In: National Symposium on Plant Biotechnology: New Frontiers, November 18–20, 2005, Lucknow. pp 159.Google Scholar
  42. 41.
    Sarwat, M., Malik, S., Srivastava, T., Narula, A., Das, S., and Srivastava, P. S. (2005b) Studies on genetic diversity of medicinal plants. In: International Conference on Modern Trends in Plant Sciences With Special Reference To The Role of Biodiversity in Conservation. February 17–20, 2005, Amravati, Maharashtra. pp122-123.Google Scholar
  43. 42.
    Sarwat, M., Das, S., and Srivastava, P. S. (2008) Comparison of AFLP, SAMPL, ISSR and RAPD Markers and Analysis of Genetic Diversity in Tribulus terrestris Genotypes. Plant Cell Rep 27: 519–528.PubMedCrossRefGoogle Scholar
  44. 43.
    Qiu, Y. X., Fu, C. X., and Wu, F. J. (2004) Analysis of population genetic structure and molecular identification of Changium smyrnioides and Chuanminshen violaceum with ISSR marker. Zhong Yao Cai 27, 164–169.Google Scholar
  45. 44.
    Singh, B. M., Sharma, K. D., Katoch, M., Guleria, S., and Sharma, T. R. (2000) Molecular analysis of variability in Podophyllum hexandrum Royle an endangered medicinal herb of northwestern Himalaya. PGR Newsletter 124, 57–61.Google Scholar
  46. 45.
    Senthil, Kumar, R., Parthiban, K. T., and Govinda, and Rao, M. (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36, 9516.Google Scholar
  47. 46.
    Korbin, M., Kuras, A., and Zurawicz, E. (2002) Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cell Mol Biol Lett 7, 785–794.PubMedGoogle Scholar
  48. 47.
    Galvan, M. Z., Bornet, B., Balatti, P. A., and Branchard, M. (2003) Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica 132, 297–301.CrossRefGoogle Scholar
  49. 48.
    Blair, M. W., Panaud, O., and McCouch, S. R. (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98, 780–792.CrossRefGoogle Scholar
  50. 49.
    Doyle, J. J., and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.Google Scholar
  51. 50.
    Sarwat, M., Negi, M., Tyagi, A. K., Lakshmikumaran, M., Das, S., and Srivastava, P. S. (2006) A Standardized Protocol for Genomic DNA Isolation from Terminalia arjuna for Genetic Diversity Analysis. Elect J Biotechnol 9: 1. ejbiotechnology.info/content/vol3/issue2/full/2/index.html.Google Scholar
  52. 51.
    Das, S., Rajagopal, J., Bhatia, S., Srivastava, P. S., and Lakshmikumaran, M. (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24, 433–440.CrossRefGoogle Scholar
  53. 52.
    Jaccard, P. (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44, 223–270.Google Scholar
  54. 53.
    Mantel, N. A. (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.PubMedGoogle Scholar
  55. 54.
    Rohlf, F. J. (2001) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 5.1. Exeter Publishing Ltd., Setauket, N.Y.Google Scholar
  56. 55.
    Yap, I. V., and Nelson, R. (1995) WinBoot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Paper Series No.14. IRRI, Los Baños, Philippines.Google Scholar
  57. 56.
    Goulao, L., Cabrita, L., Oliveira, C. M., and Leitao, J. M. (2001) Comparing RAPD and AFLP analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119, 259–270.CrossRefGoogle Scholar
  58. 57.
    Qian, W., Ge, S., and Hong, D.-Y. (2001) Genetic variation within and among populations of a wild rice (Oryza granulata) from China detected by RAPD and ISSR markers. Theor Appl Genet 102, 440–449.CrossRefGoogle Scholar
  59. 58.
    Maguire, T. L., Peakall, R., and Saenger, P. (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104, 388–398.PubMedCrossRefGoogle Scholar
  60. 59.
    Kayis, S.A., Hakki, E. E., and Pinarkara, E. (2010) Comparison of effectiveness of ISSR and RAPD markers in genetic characterization of seized marijuana (Cannabis sativa L.) in Turkey. Afr J Ag Res 5, 2925–2933.Google Scholar
  61. 60.
    Muthusamy, S., Kanagarajan, S., and Ponnusamy, S. (2008) Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Elect J Biotech 11, 3. http://www.ejbiotechnology.info/content/vol11/issue3/full/8/index.html
  62. 61.
    Saini, N., Jain, N., Jain, S., and Jain, R. K. (2004) Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR and SSR markers. Euphytica 140, 133–146CrossRefGoogle Scholar
  63. 62.
    Gostimsky, S. A., Kokaeva, Z. G., and Konovalov, F. A. (2005) Studying plant genome variation using molecular markers. Russian J Genet 41, 378–388.CrossRefGoogle Scholar
  64. 63.
    Hou, Y.-C., Yan, Z.-H., Wei, Y.-M., and Zheng, Y.-L. (2005) Genetic diversity in barley from West China based on RAPD and ISSR analysis. Barley Genet. Newslett 35: 9–22.Google Scholar
  65. 64.
    Mignouna, H. D., Abang, M. M., and Fagbemi, S. A. (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann Appl Biol 142, 269–276.CrossRefGoogle Scholar
  66. 65.
    Kjølner, S., Såstad, S. M., Taberlet, P., and Brochmann, C. (2004) Amplified fragment length polymorphism versus random amplified polymorphic DNA markers: clonal diversity in Saxifraga cernua. Mol Ecol 13: 81–86.PubMedCrossRefGoogle Scholar
  67. 66.
    Saini, N., Jain, N., Jain, S., and Jain, R. K. (2004) Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP, ISSR and SSR markers. Euphytica 140, 133–146.CrossRefGoogle Scholar
  68. 67.
    Ipek, M., and Simon, P. (2002) Evaluation of genetic diversity among garlic clones using molecular markers: comparison of AFLPs, RAPDs and isozymes. In: Plant and Animal Genome X Meeting. Jan 12–16. University of Wisconsin, USA. http://www.hort.wisc.edu/usdavcru/simon/posters/post5.html.
  69. 68.
    Singh, A., Chaudhury, A., Srivastava, P. S., and Lakshmikumaran, M. (2002) Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss. Plant Sci 162: 17–25.CrossRefGoogle Scholar
  70. 69.
    Tosti, N., and Negri, V. (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata ssp. unguiculata) landraces. Genome 45: 268–275.PubMedCrossRefGoogle Scholar
  71. 70.
    Archak, S., Gaikwad, A. B., Swamy, K. R. M., and Karihaloo, J. L. (2009) Genetic analysis and historical perspective of Cashew (Anacardium occidentale L.) introduction into India. Genome 52: 222–230.PubMedCrossRefGoogle Scholar
  72. 71.
    McGregor, C. E., Lambert, C. A., Greyling, M. M., Louw, J. H., and Warnich, L. (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113, 135–144.CrossRefGoogle Scholar
  73. 72.
    Garcia-Mas, J., Oliver, M., Gómez-Paniagua, H., and de Vicente, M. C. (2001) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101, 860–864.CrossRefGoogle Scholar
  74. 73.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Plot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.PubMedCrossRefGoogle Scholar
  75. 74.
    Teulat, B., Aldam, C., Trehin, R., Lepbrun, P., Barker, J. H. A., Arnold, G. M., Karp, A., Baudouin, L., and Rognan, F. (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the ­geographic range using sequence tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100, 764–771.CrossRefGoogle Scholar
  76. 75.
    Tautz, D., and Renz, M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res 12, 4127–4138.PubMedCrossRefGoogle Scholar
  77. 76.
    Wu, C.-J., Cheng, Z.-Q., Huang, X.-Q., Yin, S.-H., Cao, K.-M., and Sun, C.-J. (2004) Genetic diversity among and within populatios of Oryza granulata from Yunnan of China revealed by RAPD and ISSR markers: implications for the conservation of the endangered species. Plant Sci 167, 35–42.CrossRefGoogle Scholar
  78. 77.
    Vijayan, K., Kar, P. K., Tikader, A., Srivastava, P. P., Awasthi, A. K., Thangavelu, K., and Saratchandra, B. (2004) Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breed 123, 568–572.CrossRefGoogle Scholar
  79. 78.
    Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2, 225–238.CrossRefGoogle Scholar
  80. 79.
    Vosman, B., Visser, D., Rouppe, J., Marinus, V., Smulders, J. M., and Eeuwijk, F. (2004) The establishment of ‘essential derivation’ among rose varieties, using AFLP. Theor Appl Genet 109: 1718–1725.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Pharmaceutical Biotechnology, Amity Institute of PharmacyAmity UniversityNoidaIndia

Personalised recommendations