Skip to main content

Ac–Ds Solutions for Rice Insertion Mutagenesis

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

Rice is the model plant for monocotyledons. Since the completion of the high-quality sequence of its genome, the international community is deploying efforts to identify the function of the 30–40,000 nontransposable element genes of rice. These efforts comprise the creation of large collections of rice mutants accessible to the international scientific community. In addition to loss of function mutants, insertion mutagenesis using Agrobacterium-mediated transformation and engineered mobile elements allows the identification of genes through enhancer or gene trapping or activation tagging. The maize transposable element Ac–Ds is known to be active in rice since the early 1990s and it does not interfere with endogenous rice transposons. This is the guaranty that induced mutation obtained with the mobility of the Ds element will be stable when the source of Ac transposase is removed from the mutated genome. In this paper, we describe single- or double-component T-DNA constructs that have been used to introduce a functional Ac–Ds system in rice and allowed the generation and selection of different type of Ds insertion mutations in the rice genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itoh T, et al. (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  PubMed  Google Scholar 

  2. Yu J, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92.

    Article  PubMed  CAS  Google Scholar 

  3. Hirochika H, et al. (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334.

    Article  PubMed  CAS  Google Scholar 

  4. Wu JL, et al. (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97.

    Article  PubMed  CAS  Google Scholar 

  5. Till BJ, et al. (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19.

    Article  PubMed  Google Scholar 

  6. Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Cur Opin Plant Biol 4:118–122.

    Article  CAS  Google Scholar 

  7. Krishnan A, et al. (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170.

    Article  PubMed  CAS  Google Scholar 

  8. Xue,Y, Li J, Xu Z (2003) Recent highlights of the China Rice Functional Genomics Program. Trends Genet 19:390–394.

    Article  PubMed  CAS  Google Scholar 

  9. Greco R, et al. (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Gen Genomics 270:514–523.

    Article  CAS  Google Scholar 

  10. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892.

    Article  PubMed  CAS  Google Scholar 

  11. Greco R, et al. (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10–24.

    Article  PubMed  CAS  Google Scholar 

  12. Chin HG, et al. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623.

    Article  PubMed  CAS  Google Scholar 

  13. Kolesnik T, et al. (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314.

    Article  PubMed  CAS  Google Scholar 

  14. Greco R, et al. (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270:514–523.

    Article  PubMed  CAS  Google Scholar 

  15. Jeon JS et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. The Plant J 22:561–570.

    Article  CAS  Google Scholar 

  16. Jeong DH, et al. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644.

    Article  PubMed  CAS  Google Scholar 

  17. Enoki H, et al. (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613.

    Article  PubMed  CAS  Google Scholar 

  18. Nakagawa Y, et al. (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742.

    PubMed  CAS  Google Scholar 

  19. van Enckevort LJ, et al. (2005) EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol 59:99–110.

    Article  PubMed  CAS  Google Scholar 

  20. O’Keefe DP et al. (1994) Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide. Plant Physiol 105:473–482.

    PubMed  Google Scholar 

  21. Tissier AF, et al. (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang SY, et al. (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol 65:385–402.

    Article  PubMed  CAS  Google Scholar 

  23. Luan WJ, et al. (2008) An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome 51:41–49.

    Article  PubMed  CAS  Google Scholar 

  24. Izawa T, et al. (1997) Transposon tagging in rice. Plant Mol Biol 35219–229.

    Google Scholar 

  25. Johnson AA, et al. (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J 41:779–789.

    Article  PubMed  CAS  Google Scholar 

  26. Sallaud C, et al. (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464.

    Article  PubMed  CAS  Google Scholar 

  27. Chen M, et al. (2002) An integrated physical and genetic map of the rice genome. The Plant Cell 14:537–545.

    Article  PubMed  Google Scholar 

  28. Zhao Q, et al (2002) A fine physical map of the rice chromosome 4. Genome Research 12:817–823.

    Article  PubMed  CAS  Google Scholar 

  29. Healy J, et al. (1993) Linked and unlinked transposition of a genetically marked Dissociation element in transgenic tomato. Genetics 134:571–584.

    PubMed  CAS  Google Scholar 

  30. Dooner HK, et al. (1994) Distribution of unlinked receptor sites for transposed Ac elements from the bz-m2(Ac) allele in maize. Genetics 136:261–279.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Gantet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Guiderdoni, E., Gantet, P. (2012). Ac–Ds Solutions for Rice Insertion Mutagenesis. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics