Advertisement

Assessment of Thigmotaxis in Larval Zebrafish

Protocol
Part of the Neuromethods book series (NM, volume 66)

Abstract

One of the most commonly used behavioral endpoints measured in preclinical studies employing rodent models is thigmotaxis (or “wall-hugging”). Thigmotaxis is the propensity to avoid the center of an arena and stay or move in close proximity to the boundaries of the environment. Thigmotaxis is a validated index of anxiety. While assays measuring thigmotaxis in adult zebrafish have been developed, such assays have not yet been validated in larval zebrafish. Here we present a simple protocol for the measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination and performed in a standard 24-well plate. We show that larval zebrafish as young as 5 dpf respond to this challenge by engaging in thigmotaxis. This behavior is sensitive to commonly used anxiolytic (diazepam) and anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. In sum, this protocol is cost-effective, rapid (only 10 min), and amenable to medium- to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery.

Key words

Anxiety Cognition Drug screening High-throughput Pharmacology Predictive value Stress Thigmotaxis 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the SmartMix Program of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science.

References

  1. 1.
    Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351PubMedCrossRefGoogle Scholar
  2. 2.
    Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66PubMedCrossRefGoogle Scholar
  3. 3.
    Kokel D, Peterson RT (2008) Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7:483–490PubMedCrossRefGoogle Scholar
  4. 4.
    Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237PubMedCrossRefGoogle Scholar
  5. 5.
    Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478PubMedCrossRefGoogle Scholar
  6. 6.
    Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622PubMedCrossRefGoogle Scholar
  7. 7.
    Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539PubMedCrossRefGoogle Scholar
  8. 8.
    Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75:18–28PubMedCrossRefGoogle Scholar
  9. 9.
    Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:225–240PubMedCrossRefGoogle Scholar
  10. 10.
    Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962PubMedCrossRefGoogle Scholar
  11. 11.
    Belzung C, Philippot P (2007) Anxiety from a phylogenetic perspective: is there a qualitative difference between human and animal anxiety? Neural Plast 2007:59676PubMedCrossRefGoogle Scholar
  12. 12.
    Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33PubMedCrossRefGoogle Scholar
  13. 13.
    Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(suppl 2):5–24PubMedGoogle Scholar
  14. 14.
    Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342PubMedCrossRefGoogle Scholar
  15. 15.
    Colwill RM, Creton R (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes 86:222–229PubMedCrossRefGoogle Scholar
  16. 16.
    Lopez-Patino MA, Yu L, Cabral H, Zhdanova IV (2008) Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 93:160–171PubMedCrossRefGoogle Scholar
  17. 17.
    Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86:432–441PubMedCrossRefGoogle Scholar
  18. 18.
    Kallai J, Makany T, Csatho A, Karadi K, Horvath D, Kovacs-Labadi B, Jarai R, Nadel L, Jacobs JW (2007) Cognitive and affective aspects of thigmotaxis strategy in humans. Behav Neurosci 121:21–30PubMedCrossRefGoogle Scholar
  19. 19.
    Kallai J, Makany T, Karadi K, Jacobs WJ (2005) Spatial orientation strategies in Morris-type virtual water task for humans. Behav Brain Res 159:187–196PubMedCrossRefGoogle Scholar
  20. 20.
    Buske C, Gerlai R (2012) Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol 54(1):28–35PubMedCrossRefGoogle Scholar
  21. 21.
    Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284PubMedCrossRefGoogle Scholar
  22. 22.
    Stewart A, Maximino C, Marques de Brito T, Herculano AM, Gouveia A, Morato S, Cachat JM, Gaikwad S, Elegante MF, Hart PC, Kalueff A (2010) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Springer Science, New YorkGoogle Scholar
  23. 23.
    Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62PubMedCrossRefGoogle Scholar
  24. 24.
    Patton P, Windsor S, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:853–867PubMedCrossRefGoogle Scholar
  25. 25.
    Millot S, Begout ML, Chatain B (2009) Exploration behaviour and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax L.). Appl Anim Behav Sci 119:108–114CrossRefGoogle Scholar
  26. 26.
    Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp pii:923Google Scholar
  27. 27.
    MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58PubMedCrossRefGoogle Scholar
  28. 28.
    Bouwknecht JA, Paylor R (2008) Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 19:385–402PubMedCrossRefGoogle Scholar
  29. 29.
    Nusslein-Volhard C, Dahm R (2005) Zebrafish: practical approach, vol 261. Oxford University Press, TubingenGoogle Scholar
  30. 30.
    Steenbergen PJ, Richardson MK, Champagne D (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222(1):15–25PubMedCrossRefGoogle Scholar
  31. 31.
    Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, Roach AG (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33:1206–1215PubMedCrossRefGoogle Scholar
  32. 32.
    Gomez-Laplaza LM, Gerlai R (2010) Latent learning in zebrafish (Danio rerio). Behav Brain Res 208(2):509–515PubMedCrossRefGoogle Scholar
  33. 33.
    Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61:59–64PubMedCrossRefGoogle Scholar
  34. 34.
    Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22:63–73PubMedGoogle Scholar
  35. 35.
    Pelkowski SD, Kapoor M, Richendrfer HA, Wang X, Colwill RM, Creton R (2011) A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res 223:135–144PubMedCrossRefGoogle Scholar
  36. 36.
    Dadda M, Domenichini A, Piffer L, Argenton F, Bisazza A (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206:208–215PubMedCrossRefGoogle Scholar
  37. 37.
    Dadda M, Koolhaas WH, Domenici P (2010) Behavioural asymmetry affects escape performance in a teleost fish. Biol Lett 6:414–417PubMedCrossRefGoogle Scholar
  38. 38.
    Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149PubMedCrossRefGoogle Scholar
  39. 39.
    Creed RP, Miller JR (1990) Interpreting animal wall-following behaviour. Experientia 46:758–761CrossRefGoogle Scholar
  40. 40.
    Henry BL, Minassian A, Young JW, Paulus MP, Geyer MA, Perry W (2010) Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev 34:1296–1306PubMedCrossRefGoogle Scholar
  41. 41.
    Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080PubMedCrossRefGoogle Scholar
  42. 42.
    Kallai J, Karadi K, Bereczkei T, Rozsa S, Jacobs WJ, Nadel L (2007) Spatial exploration behaviour in an extended labyrinth in patients with panic disorder and agoraphobia. Psychiatry Res 149:223–230PubMedCrossRefGoogle Scholar
  43. 43.
    Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin JP, Hutchinson TH (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57:176–187PubMedCrossRefGoogle Scholar
  44. 44.
    Richards FM, Alderton WK, Kimber GM, Liu Z, Strang I, Redfern WS, Valentin JP, Winter MJ, Hutchinson TH (2008) Validation of the use of zebrafish larvae in visual safety assessment. J Pharmacol Toxicol Methods 58:50–58PubMedCrossRefGoogle Scholar
  45. 45.
    Irons TD, Macphail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Integrative Zoology, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Department of Organismal Animal Physiology, Institute for Water and Wetland ResearchNijmegen UniversityNijmegenThe Netherlands

Personalised recommendations