Skip to main content

TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses

Part of the Methods in Molecular Biology book series (MIMB,volume 860)

Abstract

GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses.

Key words

  • Mass spectral tags
  • Nontargeted fingerprint analysis
  • Targeted profiling analysis
  • Peak extraction
  • Spectral reconstruction
  • GC-MS profiling
  • Chromatography data processing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-594-7_16
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-594-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Luedemann, A., Strassburg, K., Erban, A., and Kopka, J. (2008) TagFinder for the quantitative analysis of gas chromatography – mass spectrometry (GC-MS) based metabolite profiling experiments Bioinformatics 24, 732–737.

    PubMed  CrossRef  CAS  Google Scholar 

  2. http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html

  3. http://www.unidata.ucar.edu/software/netcdf/

  4. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protocols 1, 387–396.

    CAS  Google Scholar 

  5. Erban, A., Schauer, N., Fernie, A.R., and Kopka, J. (2007) Non-supervised construction and application of mass spectral and retention time index libraries from time-of-flight GC-MS metabolite profiles. In Metabolomics: methods and protocols (Weckwerth, W. Ed.). Humana Press, Totowa, pp 19–38.

    Google Scholar 

  6. Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N. et al. (2003) TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378.

    PubMed  CAS  Google Scholar 

  7. Saeed, A.I., Hagabati, N.K., Braisted, J.C., Liang, W., Sharov, V., Howe, E.A. et al. (2006) TM4 microarray software suite. Methods Enzymol 411, 134–193.

    PubMed  CrossRef  CAS  Google Scholar 

  8. http://chemdata.nist.gov/mass-spc/Srch_v1.7/index.html

  9. Ausloos, P., Clifton, C.L., Lias, S.G., Mikaya, A.I., Stein, S.E., Tchekhovskoi, D.V. et al. (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10, 287–299.

    CAS  Google Scholar 

  10. Halket, J.M., Przyborowska, A., Stein, S.E., Mallard, W.G., Down, S., and Chalmers, R.A. (1999) Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13, 279–284.

    CAS  Google Scholar 

  11. Halket, J.M., Waterman, D., Przyborowska, A.M., Patel, R.K.P., Fraser, P.D., and Bramley, P.M. (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56, 219–243.

    CAS  Google Scholar 

  12. Kovàts, E.S. (1958) Gas-chromatographische Charakterisierung organischer Verbindungen: Teil 1. Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41, 1915–1932.

    Google Scholar 

  13. Van den Dool, H., and Kratz, P.D. (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11, 463–471.

    CrossRef  Google Scholar 

  14. Stein, S.E. (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10, 770–781.

    CAS  Google Scholar 

  15. Lu, H., Dunn, W.B., Shen, H., Kell, D.B., and Liang, Y. (2008). Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27, 215–227.

    CAS  Google Scholar 

  16. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmueller, E. et al. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Strehmel, N., Hummel, J., Erban, A., Strassburg, K., and Kopka, J. (2008) Estimation of retention index thresholds for compound matching using routine gas chromatography–mass spectrometry based metabolite profiling experiments. J Chromatogr B 871, 182–190.

    Google Scholar 

  18. Batagelj, V., and Mrvar, A. (2004) Pajek – Analysis and visualization of large Networks. In Graph Drawing Software (Jünger, M., and Mutzel, P. Eds.). Springer Publishers, Berlin, Heidelberg, pp 77–103.

    Google Scholar 

  19. Huege, J., Sulpice, R., Gibon, Y., Lisec, J., Koehl, K., and Kopka, J. (2007) GC-EI-TOF-MS analysis of in vivo-carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after (13CO2)-labelling. Phytochemistry 68, 2258–2272.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., and Kopka, J. (2005) Metabolome analysis: the potential of in vivo-labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23, 28–33.

    CAS  Google Scholar 

  21. http://www.pri.wur.nl/UK/products/MetAlign/; http://www.metalign.wur.nl/UK/

  22. Lommen, A., van der Weg, G., van Engelen, M.C., Bor, G., Hoogenboom, L.A.P., and Nielen, M.W.F. (2007) An untargeted metabolomics approach to contaminant analysis – Pinpointing potential unknown compounds. Analytica Chimica Acta 584, 43–49.

    PubMed  CrossRef  CAS  Google Scholar 

  23. de Vos, C.H.R., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J., and Hall, R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protocols 2, 778–791.

    Google Scholar 

Download references

Acknowledgements

This work received initial funding by the Max Planck Society and was subsequently supported by the EU as part of the Framework VI initiative within the plant metabolomics project META-PHOR (FOOD-CT-2006-036220). The authors acknowledge the long-standing support and encouragement by Prof. L. Willmitzer, Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany. LvM and JK acknowledge the support by the EU GRASP project, ERA-Net Plant Genomics 0313996B, Research-Assisted Breeding for the Sustainable Production of Quality Grapes and Wines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Luedemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luedemann, A., von Malotky, L., Erban, A., Kopka, J. (2011). TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses. In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols