Skip to main content

High Precision Measurement and Fragmentation Analysis for Metabolite Identification

  • Protocol
  • First Online:
Plant Metabolomics

Abstract

The degree of precision in measuring accurate masses in LC MS/MS-based metabolomics experiments is a determinant in the successful identification of the metabolites present in the original extract. Using the methods described here, complex broccoli extracts containing hundreds of small-molecule compounds (mass range 100–1,400 Da) can be profiled at resolutions up to 100,000 (full width half maximum, FWHM), useful for accurate and sensitive relative quantification experiments. Using external instrument calibration, analyte masses can be measured with high (sub-ppm to a maximum of 2 ppm) accuracy, leading to compound identifications based on elemental composition analysis. Unambiguous identification of four analytes (citric acid, chlorogenic acid, phenylalanine, and UDP-d-glucose) is used to validate the performance of the different MS/MS fragmentation regimes. Identifications are carried out either via resonance excitation collision induced dissociation (CID) or via higher energy collision dissociation (HCD) experiments, and validated by infrared multiphoton dissociation (IRMPD) fragmentation of standards. Such results, obtained on both hybrid and non-hybrid systems from metabolite profiling and identification experiments, provide evidence that the strategies selected can be successfully applied to other LC-MS based projects for plant metabolomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano, H. (2002) Systems biology: a brief overview Science 295, 1662–1664.

    CAS  Google Scholar 

  2. van der Greef, J., Stroobant, P., van der Heijden (2004) The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 8, 559–565.

    Article  PubMed  Google Scholar 

  3. Dettmer, K., Aronov, P. A., and Hammock, B. D. (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev. 26, 51–78.

    CAS  Google Scholar 

  4. Novotny, M. V., Soini, H. A., and Mechref, Y. (2008) Biochemical individuality reflected in chromatographic, electrophoretic and mass-spectrometric profiles. J Chromatogr B Analyt Technol Biomed Life Sci. 866, 26–47.

    Article  PubMed  CAS  Google Scholar 

  5. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., and Oliver, S. G. (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol. 3, 557–565.

    Article  PubMed  CAS  Google Scholar 

  6. Beckmann, M., Parker, D., Enot, D. P., Duval, E., and Draper, J. (2008) High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat Protoc. 3, 486–504.

    Article  PubMed  CAS  Google Scholar 

  7. van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., and Hankemeier, T. (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem. 370, 17–25.

    Article  PubMed  Google Scholar 

  8. Scheltema, R. A., Kamleh, A., Wildridge, D., Ebikeme, C., Watson, D. G., Barrett, M. P., Jansen, R. C., and Breitling, R. (2008) Increasing the mass accuracy of high-resolution LC-MS data using background ions: a case study on the LTQ-Orbitrap. Proteomics 8, 4647–4656.

    Article  PubMed  CAS  Google Scholar 

  9. Kothari, S., Song, Q., Xia, Y., Fico, M., Taylor, D., Amy, J. W., Stafford, G., and Cooks, R. G. (2009) Multiplexed four-channel rectilinear ion trap mass spectrometer. Anal Chem. 81, 1570–1579.

    Article  PubMed  CAS  Google Scholar 

  10. Enot, D. P., Lin, W., Beckmann, M., Parker, D., Overy, D. P., and Draper, J. (2008) Preprocessing, classification modeling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nat Protoc. 3, 446–470.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, E. Y., Schaefer, W. H., and Xu, Q. (2009) Metabolomics in pharmaceutical research and development: metabolites, mechanisms and pathways. Curr Opin Drug Discov. Devel. 12, 40–52.

    PubMed  Google Scholar 

  12. Spratlin, J. L., Serkova, N. J., and Eckhardt, S. G. (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 15, 431–440.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobs, A. (2009) An FDA perspective on the nonclinical use of the X-Omics technologies and the safety of new drugs. Toxicol Lett. 186, 32–35.

    Article  PubMed  CAS  Google Scholar 

  14. Hall, R. D., Brouwer, I. D., and Fitzgerald, M. A. (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant. 132, 162–175.

    PubMed  CAS  Google Scholar 

  15. http://www.meta-phor.eu/

  16. Damoc, E., Scigelova, M., Giannakopulos, A. E., Moehring, T., Pehal, F., and Hornshaw, M. (2008) Direct analysis of red wine using ultra-fast chromatography and high resolution mass spectrometry. Thermo Scientific Application Note 30173.

    Google Scholar 

  17. http://www.chemspider.com/

  18. Makarov, A., Denisov, E., Lange, O., and Horning, S. (2006) Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom. 17, 977–982.

    Article  PubMed  CAS  Google Scholar 

  19. Stafford, G. C., Taylor, D. M., Bradshaw, S. C., and Syka, J. E. P. (1987) Enhanced sensitivity and dynamic range on an ion trap mass spectrometer with automatic gain control. Proc. 35th Annual Conference of the American Society for Mass Spectrometry, Denver, CO 775–776.

    Google Scholar 

  20. http://planetorbitrap.com

  21. http://www.umetrics.com

  22. http://www.biocyc.org

Download references

Acknowledgements

The authors would like to thank Michael Athanas from VAST Scientific, Robert Mistrik from HighChem, Helen Jenkins and Robert Hall as partners in the META-PHOR project, for advice and useful discussions. This work was in part supported by the EU FP VI project META-PHOR (FOOD-CT-2006-036220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madalina Oppermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oppermann, M., Damoc, N.E., Crone, C., Moehring, T., Muenster, H., Hornshaw, M. (2011). High Precision Measurement and Fragmentation Analysis for Metabolite Identification. In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics