Skip to main content

Comparison of Common Homology Modeling Algorithms: Application of User-Defined Alignments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

The number of known three-dimensional protein sequences is orders of magnitude higher than the number of known protein structures. This is a result of an increase in large-scale genomic sequencing projects, the inability of proteins to crystallize or crystals to diffract well, or a simple lack of resources. An alternative is to use one of a variety of available homology modeling programs to produce a computational model of a protein. Protein models are produced using information from known protein structures found to be similar. Here, we compare the ability of a number of popular homology modeling programs to produce quality models from user-defined target–template sequence alignments over a range of circumstances including low sequence identity, variable sequence length, and when interfaced with a protein or small molecule. Programs evaluated include Prime, SWISS-MODEL, MOE, MODELLER, ROSETTA, Composer, ORCHESTRAR, and I-TASSER. Proteins to be modeled were chosen to test a range of sequence identities, sequence lengths, and protein motifs and all are of scientific importance. These include HIV-1 protease, kinases, dihydrofolate reductase, a viral capsid protein, and factor Xa among others. For the most part, the programs produce results that are similar. For example, all programs are able to produce reasonable models when sequence identities are >30% and all programs have difficulties producing complete models when sequence identities are lower. However, certain programs fare slightly better than others in certain situations and we attempt to provide insight on this topic.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Evers A and Klebe G (2004) Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor base on a ligand-supported homology model. J Med Chem 47:5381–5392

    Article  PubMed  CAS  Google Scholar 

  2. Evers A and Klabunde T (2005) Structure-based drug discovery using GPCR homology modeling: Successful virtual screening for antagonists of the alpha1A androgenic receptor. J Med Chem 48:1088–1097

    Article  PubMed  CAS  Google Scholar 

  3. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, and Kobilka BK (2007) Crystal structure of the human β2-adrenergic G-protein-coupled receptor. Nature 450:383–7

    Article  PubMed  CAS  Google Scholar 

  4. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, and Stevens RC (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–65

    Article  PubMed  CAS  Google Scholar 

  5. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC and Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318 (5854):1266–73

    Article  PubMed  CAS  Google Scholar 

  6. Wu CH, Apweiler R, Bairoch A, Natale DA et al (2006) The Universal Protein Resource (UniProt): An expanding universe of protein information. Nucl Acids Res 34:Database issue D187-D191

    Google Scholar 

  7. Schwede T, Kopp J, Guex N, and Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucl Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  8. Sippl MJ and Weitckus S (1992) Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a database of known protein conformations. Proteins 13:258–271

    Article  PubMed  CAS  Google Scholar 

  9. Abagyan RA, Totrov MM, and Kuznetsov DA (1994) ICM: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comp Chem 15:488–506

    Article  CAS  Google Scholar 

  10. Misura KM, Chivian D, Rohl CA, Kim DE, Baker D (2006) Physically realistic homology models built with ROSETTA can be more accurate than their templates. PNAS 103(14):5361–6

    Article  PubMed  CAS  Google Scholar 

  11. Sali A and Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  12. Montalvao RW, Smith RE, Lovell SC and Blundell TL (2005) CHORAL: A differential geometry approach to the prediction of the cores of protein structures. Bioinformatics 21:37193725

    Article  PubMed  CAS  Google Scholar 

  13. Smith RE, Lovell SC, Burke DF, Montalvao RW and Blundell TL (2007) Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities. Bioinformatics 23:1099–105

    Article  PubMed  CAS  Google Scholar 

  14. Deane CM and Blundell TL (2001) CODA: A combined algorithm for predicting the structurally variable regions of protein models. Protein Sci 10:599–612

    Article  PubMed  CAS  Google Scholar 

  15. Sali A and Blundell TL (1990) Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol 212:403–28

    CAS  Google Scholar 

  16. Zhu ZY, Sali A and Blundell TL (1992) A variable gap penalty function and feature weights for protein 3-D structure comparisons. Protein Eng 5:43–51

    Article  PubMed  CAS  Google Scholar 

  17. Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987a) Knowledge-based modeling of homologous proteins, Part 1: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1:377–384

    Article  PubMed  CAS  Google Scholar 

  18. Sutcliffe MJ, Hayes FR, Blundell TL (1987b) Knowledge-based modeling of homologous proteins, Part 2: Rules for the conformations of substituted sidechains. Protein Eng. 1:385

    Article  PubMed  CAS  Google Scholar 

  19. Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226:507–533

    Article  PubMed  CAS  Google Scholar 

  20. MOE. Chemical Computing Group, Montreal, Quebec, Canada.

    Google Scholar 

  21. Prime. Schrödinger, LLC, Portland, OR

    Google Scholar 

  22. Tramontano A, Cozzetto D, Giorgetti A, Raimondo D (2007) The assessment of methods for protein structure prediction. Methods Mol Biol 413:43–58

    Article  Google Scholar 

  23. Nayeem A, Sitkoff D, Krystek S (2006) A comparative study of available software for high-accuracy homology modeling: from sequence alignments to structural models. Protein Sci 15:808–24

    Article  PubMed  CAS  Google Scholar 

  24. Wallner B, Elofsson A (2005) All are not equal: A benchmark of different homology modeling programs. Protein Sci 14:1315–1327

    Article  PubMed  CAS  Google Scholar 

  25. Dolan MA, Keil M, Baker DS (2008) Comparison of Composer and ORCHESTRAR. Proteins 72:1243–58

    Article  PubMed  CAS  Google Scholar 

  26. Jorgensen WL, Maxwell DS and Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  27. Kaminski GA, Friesner RA, Tirado-Rives J and Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  28. Gallicchio E, Zhang LY and Levy RM (2002) The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. J Comp Chem 23:517–529

    Article  CAS  Google Scholar 

  29. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction Proteins 55:351–367

    CAS  Google Scholar 

  30. Fechteler T, Dengler U, and Schomburg D (1995) Prediction of protein three-dimensional structures in insertion and deletion regions: A procedure for searching data bases of representative protein fragments using geometric scoring criteria. J Mol Biol 253:114–131

    Article  PubMed  CAS  Google Scholar 

  31. Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem Soc Trans 24(1):274–279

    PubMed  CAS  Google Scholar 

  32. Van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, and Tironi IG (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide, pp. 1–1042. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland

    Google Scholar 

  33. Shen M-y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Science 15:2507–2524

    Article  Google Scholar 

  34. Eramian D, Shen M-y, Devos D, Melo F, Sali A and Marti-Renom MA (2006) A composite score for predicting errors in protein structure models. Protein Science 15:1653–1666

    Article  PubMed  CAS  Google Scholar 

  35. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5:725–738

    Article  PubMed  CAS  Google Scholar 

  36. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, and Bourne PE (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  37. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  38. Shi J, Blundell TL, and Mizuguchi K (2001) FUGUE: Sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  PubMed  CAS  Google Scholar 

  39. de Bakker PIW, Bateman A, Burke DF, Miguel RN, Mizuguchi K, Shi J, Shirai H, and Blundell TL (2001) HOMSTRAD: Adding sequence information to structure-based alignments of homologous protein families. Bioinformatics 17:748–749

    Article  PubMed  Google Scholar 

  40. Mizuguchi K, Deane C, Blundell T, and Overington J (1998) HOMSTRAD: A database of protein structure alignments for homologous families. Protein Sci 7:2469–2471

    Article  PubMed  CAS  Google Scholar 

  41. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Judith Hobrath for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Dolan, M.A., Noah, J.W., Hurt, D. (2011). Comparison of Common Homology Modeling Algorithms: Application of User-Defined Alignments. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics