Skip to main content

Genetical Genomics for Evolutionary Studies

  • Protocol
  • First Online:
Evolutionary Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 856))

Abstract

Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome in segregating populations.

The recent explosion of high-throughput data—measuring thousands of proteins and metabolites, deep sequencing, chromatin, and methyl-DNA immunoprecipitation—allows the study of the genetic variation underlying quantitative phenotypes, together termed xQTL. At the same time, mining information is not getting easier. To deal with the sheer amount of information, powerful statistical tools are needed to analyze multidimensional relationships. In the context of evolutionary computational biology, a well-designed experiment may help dissect a complex evolutionary trait using proven statistical methods for associating phenotypical variation with genomic locations.

Evolutionary expression QTL (eQTL) studies of the last years focus on gene expression adaptations, mapping the gene expression landscape, and, tentatively, eQTL networks. Here, we discuss the possibility of introducing an evolutionary prior, in the form of gene families displaying evidence of positive selection, and using that in the context of an eQTL experiment for elucidating host–pathogen protein–protein interactions. Through the example of an experimental design, we discuss the choice of xQTL platform, analysis methods, and scope of results. The resulting eQTL can be matched, resulting in putative interacting genes and their regulators. In addition, a prior may help distinguish QTL causality from reactivity, or independence of traits, by creating QTL networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandi S, Subudhi P K, Senadhira D et al. (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet. 255:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Meaburn E, Butcher L M, Schalkwyk L C & Plomin R (2006) Genotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans. Nucleic Acids Res. 34:e27p

    Article  Google Scholar 

  3. Kim S, Plagnol V, Hu T T et al. (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet. 39:1151–1155. http://www.ncbi.nlm.nih.gov/pubmed/17676040

    Google Scholar 

  4. Dixon A L, Liang L, Moffatt M F et al. (2007) A genome-wide association study of global gene expression. Nat Genet. 39:1202–1207

    Article  PubMed  CAS  Google Scholar 

  5. Jansen R C & Nap J P (2001) Genetical genomics: the added value from segregation. Trends Genet. 17:388–391

    Article  PubMed  CAS  Google Scholar 

  6. Gibson G & Weir B (2005) The quantitative genetics of transcription. Trends Genet. 21:616–623

    Article  PubMed  CAS  Google Scholar 

  7. Li Y, Alvarez O A, Gutteling E W et al. (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet. 2:e222p

    Google Scholar 

  8. Jansen R C, Tesson B M, Fu J, Yang Y & Mcintyre L M (2009) Defining gene and QTL networks. Curr Opin Plant Biol. 12:241–246

    Article  PubMed  CAS  Google Scholar 

  9. Brem R B & Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA. 102:1572–1577

    Article  PubMed  CAS  Google Scholar 

  10. Fraser H B, Moses A M & Schadt E E (2010) Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc Natl Acad Sci U S A. 107:2977–2982

    Article  PubMed  CAS  Google Scholar 

  11. Zou Y, Su Z, Yang J, Zeng Y & Gu X (2009) Uncovering genetic regulatory network divergence between duplicate genes using yeast eqtl landscape. J Exp Zool B Mol Dev Evol. 312:722–733

    Article  PubMed  Google Scholar 

  12. Li Y, Breitling R & Jansen R C (2008) Generalizing genetical genomics: getting added value from environmental perturbation. Trends Genet. 24:518–524. http://www.ncbi.nlm.nih.gov/pubmed/18774198

    Google Scholar 

  13. Kliebenstein D J, West M A, van Leeuwen H et al. (2006) Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics. 7:308p

    Google Scholar 

  14. Gilad Y, Rifkin S A & Pritchard J K (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24:408–415

    Article  PubMed  CAS  Google Scholar 

  15. Alberts R, Terpstra P, Li Y et al. (2007) Sequence polymorphisms cause many false cis eqtls. PLoS One. 2:e622p

    Article  Google Scholar 

  16. Franke L, Bakel H v, Fokkens L et al. (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 78:1011–1025

    Google Scholar 

  17. Chen X, Hackett C A, Niks R E et al. (2010) An eqtl analysis of partial resistance to puccinia hordei in barley. PLoS One. 5:e8598p

    Google Scholar 

  18. Qin L, Kudla U, Roze E H et al. (2004) Plant degradation: a nematode expansin acting on plants. Nature. 427:30p. doi:10.1038/427030a

    Article  Google Scholar 

  19. Saijo Y & Schulze-lefert P (2008) Manipulation of the eukaryotic transcriptional machinery by bacterial pathogens. Cell Host Microbe. 4:96–99

    Article  PubMed  CAS  Google Scholar 

  20. Chen L Q, Hou B H, Lalonde S et al. (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 468:527–532

    Article  PubMed  CAS  Google Scholar 

  21. Hewitson J P, Grainger J R & Maizels R M (2009) Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 167:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Bird P I, Trapani J A & Villadangos J A (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol. 9:871–882. doi:10.1038/nri2671

    Article  PubMed  CAS  Google Scholar 

  23. Bevan M, Bancroft I, Bent E et al. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 391:485–488. doi:10.1038/35140

    Article  PubMed  CAS  Google Scholar 

  24. Bishop J G, Dean A M & Mitchell-olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution. Proc Natl Acad Sci USA. 97:5322–5327

    Article  PubMed  CAS  Google Scholar 

  25. Dangl J L & Jones J D (2001) Plant pathogens and integrated defence responses to infection. Nature. 411:826–833. doi:10.1038/35081161

    Article  PubMed  CAS  Google Scholar 

  26. Flor H (1956) The complementary genic systems in flax and flax rust*. Advances in Genetics. 8:29–54. doi:10.1016/S0065-2660(08)60498-8

    Article  Google Scholar 

  27. Bakker E G, Toomajian C, Kreitman M & Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell. 18:1803–1818. doi:10.1105/tpc.106.042614

    Article  PubMed  CAS  Google Scholar 

  28. Mackey D, Belkhadir Y, Alonso J M, Ecker J R & Dangl J L (2003) Arabidopsis rin4 is a target of the type iii virulence effector avrrpt2 and modulates rps2-mediated resistance. Cell. 112:379–389

    Article  PubMed  CAS  Google Scholar 

  29. Richly E, Kurth J & Leister D (2002) Mode of amplification and reorganization of resistance genes during recent arabidopsis thaliana evolution. Mol Biol Evol. 19:76–84

    Article  PubMed  CAS  Google Scholar 

  30. Medzhitov R & Janeway C A J (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol. 9:4–9

    Article  PubMed  CAS  Google Scholar 

  31. Holub E B (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2:516–527. doi:10.1038/35080508

    Article  PubMed  CAS  Google Scholar 

  32. Xiao S, Emerson B, Ratanasut K et al. (2004) Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol Biol Evol. 21:1661–1672. doi:10.1093/molbev/msh165

    Article  PubMed  CAS  Google Scholar 

  33. Mondragon-Palomino M, Meyers B C, Michelmore R W & Gaut B S (2002) Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 12:1305–1315. doi:10.1101/gr.159402

    Google Scholar 

  34. Sun X, Cao Y & Wang S (2006) Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol. 140:998–1008. doi:10.1104/pp.105.073080

    Article  PubMed  CAS  Google Scholar 

  35. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555–556. http://www.ncbi.nlm.nih.gov/pubmed/9367129

  36. Kosiol, C., & Anisimova, M. (2012) Selection on the protein coding genome. In: Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  37. Prins, P., Belhachemi, D., Möller, S. & Smant, G. (2012) Scalable computing in evolutionary genomics. In: Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  38. Altschul S F, Madden T L, Schaffer A A et al. (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  39. Edgar R C (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  40. Suyama M, Torrents D & Bork P (2006) Pal2nal: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609-W612. doi:10.1093/nar/gkl315

    Article  PubMed  CAS  Google Scholar 

  41. Goto N, Prins P, Nakao M et al. (2010) BioRuby: bioinformatics software for the Ruby programming language. Bioinformatics. 26:2617–2619. doi:10.1093/bioinformatics/btq475

    Article  PubMed  CAS  Google Scholar 

  42. Altschul S F, Madden T L, Schaffer A A et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  43. Rhee S Y, Beavis W, Berardini T Z et al. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31:224–228. http://www.ncbi.nlm.nih.gov/pubmed/12519987

  44. Anisimova M, Nielsen R & Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics. 164:1229–1236

    PubMed  CAS  Google Scholar 

  45. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408:796–815

    Google Scholar 

  46. Michelmore R W & Meyers B C (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8:1113–1130. http://www.ncbi.nlm.nih.gov/pubmed/9847076

    Google Scholar 

  47. Salinas J & Sanchez-serrano J (2006) Arabidopsis protocols. Humana Pr Inc, Totowa, NJ

    Google Scholar 

  48. Fu J & Jansen R C (2006) Optimal design and analysis of genetic studies on gene expression. Genetics. 172:1993–1999. doi:10.1534/genetics.105.047001

    Article  PubMed  CAS  Google Scholar 

  49. Mortazavi A, Williams B A, Mccue K, Schaeffer L & Wold B (2008) Mapping and quantifying mammalian transcriptomes by rna-seq. Nat Methods. 5:621–628. doi:10.1038/nmeth.1226

    Article  PubMed  CAS  Google Scholar 

  50. Eklund A C, Turner L R, Chen P et al. (2006) Replacing cRNA targets with cDNA reduces microarray cross-hybridization. Nat Biotechnol. 24:1071–1073. doi:10.1038/nbt0906-1071

    Article  PubMed  CAS  Google Scholar 

  51. Hoen P A, Ariyurek Y, Thygesen H H et al. (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 36:e141p. doi:10.1093/nar/gkn705

    Google Scholar 

  52. Keurentjes J J, Sulpice R, Gibon Y et al. (2008) Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol. 9:R129p. doi:10.1186/gb-2008-9-8-r129

    Article  Google Scholar 

  53. Fu J, Swertz M A, Keurentjes J J & Jansen R C (2007) Metanetwork: a computational protocol for the genetic study of metabolic networks. Nat Protoc. 2:685–694. doi:10.1038/nprot.2007.96

    Article  PubMed  CAS  Google Scholar 

  54. Fu J, Keurentjes J J, Bouwmeester H et al. (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet. 41:166–167. doi:10.1038/ng.308

    Article  PubMed  CAS  Google Scholar 

  55. Breitling R, Li Y, Tesson B M et al. (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet. 4:e1000232p. doi:10.1371/journal.pgen.1000232

    Article  Google Scholar 

  56. Development core team R (2010) R: a language and environment for statistical computing. http://www.R-project.org

  57. Broman K & Sen (2009) A guide to QTL mapping with R/qtl. Springer Verlag, New York, NY

    Google Scholar 

  58. Arends D, Prins P, Jansen R C & Broman K W (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics. 26:2990–2992. doi:10.1093/bioinformatics/btq565

    Article  PubMed  CAS  Google Scholar 

  59. Tierney L, Rossini A & Li N (2009) SNOW: a parallel computing framework for the R system. International Journal of Parallel Programming. 37:78–90

    Article  Google Scholar 

  60. Arends D, Prins P, Broman K W & Jansen R C (2010) Tutorial – Multiple-QTL Mapping (MQM) Analysis. http://www.rqtl.org/tutorials/MQM-tour.pdf

  61. Li Y, Tesson B M, Churchill G A & Jansen R C (2010) Critical reasoning on causal inference in genome-wide linkage and association studies. Trends Genet. 26:493–498. doi:10.1016/j.tig.2010.09.002

    Article  PubMed  Google Scholar 

  62. Wayne M L & Mcintyre L M (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA. 99:14903–14906. doi:10.1073/pnas.222549199

    Article  PubMed  CAS  Google Scholar 

  63. Westra HJ, Jansen RC, Fehrmann RS, te Meerman GJ, van Heel D, Wijmenga C, Franke L. (2011) MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics. Aug 1;27(15):2104–11. Epub 2011 Jun 7. http://www.ncbi.nlm.nih.gov/pubmed/21653519

Download references

Acknowledgments

The European Commission’s Integrated Project BIOEXPLOIT (FOOD-2005-513959 to GS and PP); the Netherlands Organization for Scientific Research/TTI Green Genetics (1CC029RP to PP); the EU 7th Framework Programme under the Research Project PANACEA (222936 to RJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pjotr Prins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Prins, P., Smant, G., Jansen, R.C. (2012). Genetical Genomics for Evolutionary Studies. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 856. Humana Press. https://doi.org/10.1007/978-1-61779-585-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-585-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-584-8

  • Online ISBN: 978-1-61779-585-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics