Advertisement

The Essentials of Computational Molecular Evolution

  • Stéphane Aris-BrosouEmail author
  • Nicolas Rodrigue
Part of the Methods in Molecular Biology book series (MIMB, volume 855)

Abstract

In this chapter, we give a brief yet self-contained introduction to computational molecular evolution. In particular, we present the emergence of the use of likelihood-based methods, review the standard DNA substitution models, and introduce how model choice operates. We also present recent developments in inferring absolute dates and rates on a phylogeny and show how state-of-the-art models take inspiration from diffusion theory to link population genetics, which traditionally focuses at a taxonomic level under that of species, and molecular evolution.

Key words

Likelihood Bayes Model choice Phylogenetics Divergence times 

Notes

Acknowledgments

We would like to thank Michelle Brazeau, Eric Chen, Ilya Hekimi, Benoît Pagé, and, in particular, Wayne Sawtell for their critical reading of a draft of this chapter. This work was partly supported by the Natural Sciences Research Council of Canada (N.R., S.A.B.) and the University of Ottawa (S.A.B.).

References

  1. 1.
    Nei, M. and Kumar, S. (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, UK.Google Scholar
  2. 2.
    Higgs, P. G. and Attwood, T. K. (2005) Bioinformatics and molecular evolution. Blackwell Pub, Malden, MA.Google Scholar
  3. 3.
    Yang, Z. (2006) Computational molecular evolution. Oxford University Press, Oxford, UK.Google Scholar
  4. 4.
    Balding, D. J., Bishop, M. J., and Cannings, C. (2007) Handbook of statistical genetics. John Wiley & Sons, 3rd ed edn, Chichester, UK.Google Scholar
  5. 5.
    Salemi, M., Vandamme, A.-M., and Lemey, P. (2009) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, 2nd edn, Cambridge, UK.Google Scholar
  6. 6.
    Aris-Brosou, S. and Xia, X. (2008) Phylogenetic analyses: A toolbox expanding towards Bayesian methods. Int J Plant Genomics, 2008, 683509.PubMedGoogle Scholar
  7. 7.
    Rodrigue, N. and Philippe, H. (2010) Mechanistic revisions of phenomenological modeling strategies in molecular evolution. Trends Genet, 26, 248–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang, Z. (2000) Complexity of the simplest phylogenetic estimation problem. Proc Biol Sci, 267, 109–16.PubMedCrossRefGoogle Scholar
  9. 9.
    Sober, E. (1988) Reconstructing the past: parsimony, evolution, and inference. MIT Press, Cambridge, MA.Google Scholar
  10. 10.
    Durbin, R. (1998) Biological sequence analysis: probabalistic models of proteins and nucleic acids. Cambridge University Press, Cambridge, UK.Google Scholar
  11. 11.
    Felsenstein, J. (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MA.Google Scholar
  12. 12.
    Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24, 1586–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Efron, B. and Tibshirani, R. (1993) An introduction to the bootstrap, vol. 57. Chapman & Hall, New York, NY.Google Scholar
  14. 14.
    Efron, B., Halloran, E., and Holmes, S. (1996) Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A, 93, 7085–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  16. 16.
    Baldauf, S. L. (2003) Phylogeny for the faint of heart: a tutorial. Trends Genet, 19, 345–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Hasegawa, M. and Kishino, H. (1989) Confidence limits of the maximum-likelihood estimate of the hominoid three from mitochondrial-DNA sequences. Evolution, 43, 672–677.CrossRefGoogle Scholar
  18. 18.
    Anisimova, M. and Gascuel, O. (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol, 55, 539–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Hillis, D. M. and Bull, J. J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol, 42, pp. 182–192.Google Scholar
  20. 20.
    Felsenstein, J. and Kishino, H. (1993) Is there something wrong with the bootstrap on phylogenies? a reply to Hillis and Bull. Syst Biol, 42, pp. 193–200.Google Scholar
  21. 21.
    Yang, Z. and Rannala, B. (2005) Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol, 54, 455–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Berry, V. and Gascuel, O. (1996) On the interpretation of bootstrap trees: Appropriate threshold of clade selection and induced gain. Mol Biol Evol, 13, 999.CrossRefGoogle Scholar
  23. 23.
    Shimodaira, H. and Hasegawa, M. (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 17, 1246–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Felsenstein, J. (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool, 27, 401–410.CrossRefGoogle Scholar
  25. 25.
    Tuffley, C. and Steel, M. (1997) Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull Math Biol, 59, 581–607.PubMedCrossRefGoogle Scholar
  26. 26.
    Steel, M. and Penny, D. (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol, 17, 839–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Holder, M. T., Lewis, P. O., and Swofford, D. L. (2010) The Akaike Information Criterion will not choose the no common mechanism model. Syst Biol, 59, 477–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N., and Delsuc, F. (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol, 5, 50.PubMedCrossRefGoogle Scholar
  29. 29.
    Brinkmann, H., van der Giezen, M., Zhou, Y., Poncelin de Raucourt, G., and Philippe, H. (2005) An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol, 54, 743–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., and Roger, A. J. (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proc Natl Acad Sci U S A, 106, 3859–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu, H., Aris-Brosou, S., Probert, I., and de Vargas, C. (2010) A timeline of the environmental genetics of the haptophytes. Mol Biol Evol, 27, 161–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Zuckerkandl, E. and Pauling, L. (1965) Evolutionary divergence and convergence in proteins. Bryson, V. and Vogel, H. J. (eds.), Evolving Genes and Proteins, pp. 97–166, Academic Press, New York, NY.Google Scholar
  33. 33.
    Galtier, N., Gascuel, O., and Jean-Marie, A. (2005) Markov models in molecular evolution. Nielsen, R. (ed.), Statistical Methods in Molecular Evolution, pp. 3–24, Statistics for Biology and Health, Springer, New York, NY.Google Scholar
  34. 34.
    Cox, D. R. and Miller, H. D. (1965) The theory of stochastic processes. Wiley, New York, NY.Google Scholar
  35. 35.
    Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol, 17, 368–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Jukes, J. C. and Cantor, C. R. (1969) Evolution of protein molecules. Munro, H. N. (ed.), Mammalian protein metabolism, pp. 21–123, Academic Press, New York, NY.Google Scholar
  37. 37.
    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 16, 111–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Hasegawa, M., Kishino, H., and Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol, 22, 160–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.Google Scholar
  40. 40.
    Huelsenbeck, J. P., Larget, B., and Alfaro, M. E. (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol, 21, 1123–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang, Z. and Roberts, D. (1995) On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol Biol Evol, 12, 451–8.PubMedGoogle Scholar
  42. 42.
    Huelsenbeck, J. P., Bollback, J. P., and Levine, A. M. (2002) Inferring the root of a phylogenetic tree. Syst Biol, 51, 32–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang, Z. (2000) Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol, 51, 423–32.PubMedGoogle Scholar
  44. 44.
    Aris-Brosou, S. (2005) Determinants of adaptive evolution at the molecular level: the extended complexity hypothesis. Mol Biol Evol, 22, 200–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Burnham, K. P. and Anderson, D. R. (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York, NY.Google Scholar
  46. 46.
    Anisimova, M., Bielawski, J. P., and Yang, Z. (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol, 18, 1585–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Whelan, S. and Goldman, N. (2004) Estimating the frequency of events that cause multiple-nucleotide changes. Genetics, 167, 2027–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Wong, W. S. W., Yang, Z., Goldman, N., and Nielsen, R. (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 168, 1041–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Massingham, T. and Goldman, N. (2005) Detecting amino acid sites under positive selection and purifying selection. Genetics, 169, 1753–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang, J., Nielsen, R., and Yang, Z. (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol, 22, 2472–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Anisimova, M. and Yang, Z. (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol, 24, 1219–28.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang, Z. (2010) A likelihood ratio test of speciation with gene flow using genomic sequence data. Genome Biol Evol, 2, 200–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Fletcher, W. and Yang, Z. (2010) The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol, 27, 2257–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang, Z. and dos Reis, M. (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol, 28, 1217–28.Google Scholar
  55. 55.
    Self, S. G. and Liang, K.-Y. (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. JASA, 82, 605–610.CrossRefGoogle Scholar
  56. 56.
    Posada, D. and Crandall, K. A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Posada, D. (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol, 25, 1253–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Cunningham, C. W., Zhu, H., and Hillis, D. M. (1998) Best-fit maximum-likelihood models for phylogenetic inference: Empirical tests with known phylogenies. Evolution, 52, 978–987.CrossRefGoogle Scholar
  59. 59.
    Pol, D. (2004) Empirical problems of the hierarchical likelihood ratio test for model selection. Syst Biol, 53, 949–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann Math Stat, 22, 79–86.CrossRefGoogle Scholar
  61. 61.
    Minin, V., Abdo, Z., Joyce, P., and Sullivan, J. (2003) Performance-based selection of likelihood models for phylogeny estimation. Syst Biol, 52, 674–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Ripplinger, J. and Sullivan, J. (2008) Does choice in model selection affect maximum likelihood analysis? Syst Biol, 57, 76–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Posada, D. and Crandall, K. A. (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol, 50, 580–601.PubMedCrossRefGoogle Scholar
  64. 64.
    Abdo, Z., Minin, V. N., Joyce, P., and Sullivan, J. (2005) Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation. Mol Biol Evol, 22, 691–703.PubMedCrossRefGoogle Scholar
  65. 65.
    Luo, A., Qiao, H., Zhang, Y., Shi, W., Ho, S. Y., Xu, W., Zhang, A., and Zhu, C. (2010) Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evol Biol, 10, 242.PubMedCrossRefGoogle Scholar
  66. 66.
    Schwarz, G. (1978) Estimating the dimension of a model. Ann Stat, 6, 461–464.CrossRefGoogle Scholar
  67. 67.
    Evans, J. and Sullivan, J. (2011) Approximating model probabilities in Bayesian Information Criterion and Decision-Theoretic approaches to model selection in phylogenetics. Mol Biol Evol, 28, 343–9.Google Scholar
  68. 68.
    Kleinman, C. L., Rodrigue, N., Bonnard, C., Philippe, H., and Lartillot, N. (2006) A maximum likelihood framework for protein design. BMC Bioinformatics, 7, 326.PubMedCrossRefGoogle Scholar
  69. 69.
    Rodrigue, N., Philippe, H., and Lartillot, N. (2007) Exploring fast computational strategies for probabilistic phylogenetic analysis. Syst Biol, 56, 711–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Yang, Z. (2005) Bayesian inference in molecular phylogenetics. Gascuel, O. (ed.), Mathematics of Evolution and Phylogeny, Chap. 3, pp. 63–90, Oxford University Press, Oxford, UK.Google Scholar
  71. 71.
    Jeffreys, H. (1939) Theory of probability. The International series of monographs on physics, The Clarendon press, Oxford, UK.Google Scholar
  72. 72.
    Kass, R. E. and Raftery, A. E. (1995) Bayes factors. JASA, 90, 773–795.CrossRefGoogle Scholar
  73. 73.
    Lartillot, N. and Philippe, H. (2006) Computing Bayes factors using thermodynamic integration. Syst Biol, 55, 195–207.PubMedCrossRefGoogle Scholar
  74. 74.
    Fan, Y., Wu, R., Chen, M.-H., Kuo, L., and Lewis, P. O. (2011) Choosing among partition models in Bayesian phylogenetics. Mol Biol Evol, 28, 523–32.Google Scholar
  75. 75.
    Newton, M. A. and Raftery, A. E. (1994) Approximating Bayesian inference with the weighted likelihood bootstrap. J R Stat Soc B, 56, 3–48.Google Scholar
  76. 76.
    Aris-Brosou, S. (2003) How Bayes tests of molecular phylogenies compare with frequentist approaches. Bioinformatics, 19, 618–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Ronquist, F. and Huelsenbeck, J. P. (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Drummond, A. J. and Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol, 7, 214.PubMedCrossRefGoogle Scholar
  79. 79.
    Raftery, A. E. (1996) Hypothesis testing and model selection. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.), Markov chain Monte Carlo in practice, pp. 163–187, Chapman & Hall, Boca Raton, FL.Google Scholar
  80. 80.
    Xie, W., Lewis, P., Fan, Y., Kuo, L., and Chen, M.-H. (2011) Improving marginal likelihood estimation for Baysian phylogenetic model selection. Syst. Biol, 60, 150–60.Google Scholar
  81. 81.
    Smyth, P. (2000) Model selection for probabilistic clustering using cross-validated likelihood. Statistics and Computing, 10, 63–72.CrossRefGoogle Scholar
  82. 82.
    Lartillot, N., Brinkmann, H., and Philippe, H. (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol, 7 Suppl 1, S4.Google Scholar
  83. 83.
    Cavalli-Sforza, L. L. and Edwards, A. W. (1967) Phylogenetic analysis. models and estimation procedures. Am J Hum Genet, 19, 233–57.PubMedGoogle Scholar
  84. 84.
    Aris-Brosou, S. (2003) Least and most powerful phylogenetic tests to elucidate the origin of the seed plants in the presence of conflicting signals under misspecified models. Syst Biol, 52, 781–93.PubMedGoogle Scholar
  85. 85.
    Foulds, L. R., Penny, D., and Hendy, M. D. (1979) A general approach to proving the minimality of phylogenetic trees illustrated by an example with a set of 23 vertebrates. J Mol Evol, 13, 151–166.PubMedCrossRefGoogle Scholar
  86. 86.
    Hendy, M. D. and Penny, D. (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci, 59, 277–290.CrossRefGoogle Scholar
  87. 87.
    Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–25.PubMedGoogle Scholar
  88. 88.
    Gascuel, O. (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol, 14, 685–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Bruno, W. J., Socci, N. D., and Halpern, A. L. (2000) Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol, 17, 189–97.PubMedCrossRefGoogle Scholar
  90. 90.
    Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol, 59, 307–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Larget, B. and Simon, D. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol, 16, 750.CrossRefGoogle Scholar
  92. 92.
    Holder, M. T., Lewis, P. O., Swofford, D. L., and Larget, B. (2005) Hastings ratio of the LOCAL proposal used in Bayesian phylogenetics. Syst Biol, 54, 961–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Whelan, S. (2007) New approaches to phylogenetic tree search and their application to large numbers of protein alignments. Syst Biol, 56, 727–40.PubMedCrossRefGoogle Scholar
  94. 94.
    Benton, M. J. and Ayala, F. J. (2003) Dating the tree of life. Science, 300, 1698–700.PubMedCrossRefGoogle Scholar
  95. 95.
    Rannala, B. and Yang, Z. (2007) Inferring speciation times under an episodic molecular clock. Syst Biol, 56, 453–66.PubMedCrossRefGoogle Scholar
  96. 96.
    Wegmann, D., Leuenberger, C., and Excoffier, L. (2009) Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics, 182, 1207–18.PubMedCrossRefGoogle Scholar
  97. 97.
    Reich, D., et al. (2010) Genetic history of an archaic hominin group from denisova cave in siberia. Nature, 468, 1053–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Hedges, S. B., Dudley, J., and Kumar, S. (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics, 22, 2971–2.PubMedCrossRefGoogle Scholar
  99. 99.
    Welch, J. J. and Bromham, L. (2005) Molecular dating when rates vary. Trends Ecol Evol, 20, 320–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Kimura, M. (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.Google Scholar
  101. 101.
    Sarich, V. M. and Wilson, A. C. (1973) Generation time and genomic evolution in primates. Science, 179, 1144–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Muse, S. V. and Weir, B. S. (1992) Testing for equality of evolutionary rates. Genetics, 132, 269–76.PubMedGoogle Scholar
  103. 103.
    Bromham, L., Penny, D., Rambaut, A., and Hendy, M. D. (2000) The power of relative rates tests depends on the data. J Mol Evol, 50, 296–301.PubMedGoogle Scholar
  104. 104.
    Rambaut, A. (2000) Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics, 16, 395–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Martin, A. P. (2001) Molecular clocks. Encyclopedia of Life Sciences, pp. 1–6, Nature Pub Group, New York, NY.Google Scholar
  106. 106.
    Wray, G. A., Levinton, J. S., and Shapiro, L. H. (1996) Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science, 274, 568–573.CrossRefGoogle Scholar
  107. 107.
    Kumar, S. and Hedges, S. B. (1998) A molecular timescale for vertebrate evolution. Nature, 392, 917–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang, D. Y., Kumar, S., and Hedges, S. B. (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci, 266, 163–71.PubMedCrossRefGoogle Scholar
  109. 109.
    Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., and Hedges, S. B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–33.PubMedCrossRefGoogle Scholar
  110. 110.
    Hedges, S. B., Chen, H., Kumar, S., Wang, D. Y., Thompson, A. S., and Watanabe, H. (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol, 1, 4.PubMedCrossRefGoogle Scholar
  111. 111.
    Graur, D. and Martin, W. (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet, 20, 80–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Rambaut, A. and Bromham, L. (1998) Estimating divergence dates from molecular sequences. Mol Biol Evol, 15, 442–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Yoder, A. D. and Yang, Z. (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol, 17, 1081–90.PubMedCrossRefGoogle Scholar
  114. 114.
    Yang, Z. (2004) A heuristic rate smoothing procedure for maximum likelihood estimation of species divergence times. Acta Zool Sinica, 50, 645–56.Google Scholar
  115. 115.
    Aris-Brosou, S. (2007) Dating phylogenies with hybrid local molecular clocks. PLoS One, 2, e879.PubMedCrossRefGoogle Scholar
  116. 116.
    Drummond, A. J. and Suchard, M. A. (2010) Bayesian random local clocks, or one rate to rule them all. BMC Biol, 8, 114.PubMedCrossRefGoogle Scholar
  117. 117.
    Sanderson, M. (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol, 14, 1218.CrossRefGoogle Scholar
  118. 118.
    Sanderson, M. J. (2002) Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol, 19, 101–109.PubMedCrossRefGoogle Scholar
  119. 119.
    Gillespie, J. H. (1991) The causes of molecular evolution. Oxford University Press, New York, NY.Google Scholar
  120. 120.
    Thorne, J. L., Kishino, H., and Painter, I. S. (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol, 15, 1647–57.PubMedCrossRefGoogle Scholar
  121. 121.
    Aris-Brosou, S. and Yang, Z. (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol, 51, 703–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Aris-Brosou, S. and Yang, Z. (2003) Bayesian models of episodic evolution support a late precambrian explosive diversification of the Metazoa. Mol Biol Evol, 20, 1947–54.PubMedCrossRefGoogle Scholar
  123. 123.
    Rannala, B. and Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol, 43, 304–11.PubMedCrossRefGoogle Scholar
  124. 124.
    Hein, J., Schierup, M. H., and Wiuf, C. (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, Oxford, UK.Google Scholar
  125. 125.
    Pybus, O. G., Rambaut, A., and Harvey, P. H. (2000) An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155, 1429–37.PubMedGoogle Scholar
  126. 126.
    Drummond, A. J., Rambaut, A., Shapiro, B., and Pybus, O. G. (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol, 22, 1185–92.PubMedCrossRefGoogle Scholar
  127. 127.
    Minin, V. N., Bloomquist, E. W., and Suchard, M. A. (2008) Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol, 25, 1459–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Hedges, S. B. and Kumar, S. (2004) Precision of molecular time estimates. Trends Genet, 20, 242–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Yang, Z. and Rannala, B. (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol, 23, 212–26.PubMedCrossRefGoogle Scholar
  130. 130.
    Inoue, J., Donoghue, P. C. J., and Yang, Z. (2010) The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol, 59, 74–89.PubMedCrossRefGoogle Scholar
  131. 131.
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol, 4, e88.PubMedCrossRefGoogle Scholar
  132. 132.
    Wertheim, J. O., Sanderson, M. J., Worobey, M., and Bjork, A. (2010) Relaxed molecular clocks, the bias-variance trade-off, and the quality of phylogenetic inference. Syst Biol, 59, 1–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Lemey, P., Rambaut, A., Drummond, A. J., and Suchard, M. A. (2009) Bayesian phylogeography finds its roots. PLoS Comput Biol, 5, e1000520.PubMedCrossRefGoogle Scholar
  134. 134.
    Lemey, P., Rambaut, A., Welch, J. J., and Suchard, M. A. (2010) Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol, 27, 1877–85.PubMedCrossRefGoogle Scholar
  135. 135.
    Guillot, G., Santos, F., and Estoup, A. (2008) Analysing georeferenced population genetics data with geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics, 24, 1406–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Nadin-Davis, S. A., Feng, Y., Mousse, D., Wandeler, A. I., and Aris-Brosou, S. (2010) Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: footprints of an emerging zoonosis. Mol Ecol, 19, 2120–36.PubMedCrossRefGoogle Scholar
  137. 137.
    Pagel, M. and Meade, A. (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol, 53, 571–81.PubMedCrossRefGoogle Scholar
  138. 138.
    Pagel, M., Meade, A., and Barker, D. (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol, 53, 673–84.PubMedCrossRefGoogle Scholar
  139. 139.
    Lartillot, N. and Poujol, R. (2011) A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol Biol Evol, 28, 729–44.Google Scholar
  140. 140.
    Bromham, L., Woolfit, M., Lee, M. S. Y., and Rambaut, A. (2002) Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution, 56, 1921–30.PubMedGoogle Scholar
  141. 141.
    Genomes Project Consortium, Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E., and McVean, G. A. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–73.CrossRefGoogle Scholar
  142. 142.
    Muse, S. V. and Gaut, B. S. (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol, 11, 715–24.PubMedGoogle Scholar
  143. 143.
    Goldman, N. and Yang, Z. (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol, 11, 725–36.PubMedGoogle Scholar
  144. 144.
    Kosiol, C. and Anisimova, M. (2012) Methods for detecting natural selection in protein-coding genes. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC.Google Scholar
  145. 145.
    Thorne, J. L., Choi, S. C., Yu, J., Higgs, P. G., and Kishino, H. (2007) Population genetics without intraspecific data. Mol Biol Evol, 24, 1667–77.PubMedCrossRefGoogle Scholar
  146. 146.
    Choi, S. C., Hobolth, A., Robinson, D. M., Kishino, H., and Thorne, J. L. (2007) Quantifying the impact of protein tertiary structure on molecular evolution. Mol Biol Evol, 24, 1769–82.PubMedCrossRefGoogle Scholar
  147. 147.
    Halpern, A. L. and Bruno, W. J. (1998) Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol Biol Evol, 15, 910–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Yang, Z. and Nielsen, R. (2008) Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol, 25, 568–79.PubMedCrossRefGoogle Scholar
  149. 149.
    Rodrigue, N., Philippe, H., and Lartillot, N. (2010) Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles. Proc Natl Acad Sci U S A, 107, 4629–34.PubMedCrossRefGoogle Scholar
  150. 150.
    Choi, S. C., Redelings, B. D., and Thorne, J. L. (2008) Basing population genetic inferences and models of molecular evolution upon desired stationary distributions of DNA or protein sequences. Philos Trans R Soc Lond B Biol Sci, 363, 3931–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Hartl, D. L. and Clark, A. G. (2007) Principles of population genetics. Sinauer Associates, 4th ed edn, Sunderland, MA.Google Scholar
  152. 152.
    Kimura, M. (1962) On the probability of fixation of mutant genes in a population. Genetics, 47, 713–9.PubMedGoogle Scholar
  153. 153.
    Rice, S. H. (2004) Evolutionary theory: mathematical and conceptual foundations. Sinauer Associates, Sunderland, MA.Google Scholar
  154. 154.
    Kimura, M. (1978) Change of gene frequencies by natural selection under population number regulation. Proc Natl Acad Sci U S A, 75, 1934–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Prins, P., Belhachemi, D., Möller, S., and Smant, G. (2012) Scalable computing in evolutionary genomics. In Anisimova, M. (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC.Google Scholar
  156. 156.
    Yang, Z. (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol, 10, 1396–401.PubMedGoogle Scholar
  157. 157.
    Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol, 39, 306–14.PubMedCrossRefGoogle Scholar
  158. 158.
    Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F. (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20, 407–15.PubMedCrossRefGoogle Scholar
  159. 159.
    Stamatakis, A., Hoover, P., and Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol, 57, 758–71.PubMedCrossRefGoogle Scholar
  160. 160.
    Hastie, T., Tibshirani, R., and Friedman, J. H. (2009) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics, Springer, 2nd ed edn, New York, NY.Google Scholar
  161. 161.
    Stamatakis, A., Ludwig, T., and Meier, H. (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21, 456–63.PubMedCrossRefGoogle Scholar
  162. 162.
    Stamatakis, A., Göker, M., and Grimm, G. W. (2010) Maximum likelihood analyses of 3,490 rbcL sequences: Scalability of comprehensive inference versus group-specific taxon sampling. Evol Bioinform Online, 6, 73–90.PubMedCrossRefGoogle Scholar
  163. 163.
    Stamatakis, A. and Alachiotis, N. (2010) Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics, 26, i132–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Suchard, M. A. and Rambaut, A. (2009) Many-core algorithms for statistical phylogenetics. Bioinformatics, 25, 1370–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Schatz, M. C., Langmead, B., and Salzberg, S. L. (2010) Cloud computing and the DNA data race. Nat Biotechnol, 28, 691–3.PubMedCrossRefGoogle Scholar
  166. 166.
    Dereeper, A., et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res, 36, W465–9.PubMedCrossRefGoogle Scholar
  167. 167.
    de Koning, A. P. J., Gu, W., and Pollock, D. D. (2010) Rapid likelihood analysis on large phylogenies using partial sampling of substitution histories. Mol Biol Evol, 27, 249–65.PubMedCrossRefGoogle Scholar
  168. 168.
    Anisimova, M. and Yang, Z. (2004) Molecular evolution of the hepatitis delta virus antigen gene: recombination or positive selection? J Mol Evol, 59, 815–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Biology and Mathematics & Statistics and Center for Advanced Research in Environmental GenomicsUniversity of OttawaOttawaCanada
  2. 2.Department of Biology and Center for Advanced Research in Environmental GenomicsUniversity of OttawaOttawaCanada
  3. 3.Quebec Center for Biodiversity ScienceMcGill UniversityMontrealCanada
  4. 4.Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Center, Central Experimental FarmOttawaCanada

Personalised recommendations