Diversity of Genome Organisation

  • Aidan BuddEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 855)


Genomes can be organised in different ways. Understanding the extent of the diversity of genome organisation, the processes that create it, and its consequences is particularly important for two key reasons. Firstly, it is relevant for our understanding of the genetic basis for the astounding diversity of life on Earth. Elucidating the mechanisms and processes underlying such diversity has been, and remains, one of the central goals of biological research. Secondly, it helps prepare us for our analysis of new genomes. For example, knowing that plasmids can be circular or linear, we know to check for circularity or linearity in a plasmid we encounter for the first time (if this is relevant for our analysis). This article provides an overview of variation and diversity in several aspects of genome organisation and architecture, including the number, size, ploidy, composition (RNA or DNA), packaging, and topology of the molecules encoding the genome. Additionally, it reviews differences in selected genomic features, i.e. telomeres, centromeres, DNA replication origins, and sex chromosomes. To put this in context, it incorporates a brief survey of organism diversity and the tree of life, and ends with a discussion of mutation mechanisms and inheritance, and explanations of key terms used to describe genomic variation.

Key words

Tree of life Organism diversity Viruses Prokaryotes Eukaryotes Nucleus Sex chromosomes Centromeres Plastids Mitochondria Genome variation Mutations Genome size 



Many thanks to Maria Anisimova, Ricardo C. Rodriguez de la Vega, and Damien Devos for many valuable comments and suggestions during the writing of this article.


  1. 1.
    Kondrashov AS (1997) Evolutionary genetics of life cycles Annu Rev Ecol Evol Syst 28:391435CrossRefGoogle Scholar
  2. 2.
    Parfrey LW, Lahr DJ, Katz LA (2008) The dynamic nature of eukaryotic genomes. Mol Biol Evol 25:787794PubMedCrossRefGoogle Scholar
  3. 3.
    Budd, A. (2012) Introduction to genome biology: features, processes, structures. In Anisimova M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLCGoogle Scholar
  4. 4.
    Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203217PubMedCrossRefGoogle Scholar
  5. 5.
    Bolker JA (1995) Model systems in developmental biology. Bioessays 17:451455PubMedCrossRefGoogle Scholar
  6. 6.
    Hughes CL, Kaufman TC (2000) A diverse approach to arthropod development. Evol Dev 2:68PubMedCrossRefGoogle Scholar
  7. 7.
    Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882891PubMedCrossRefGoogle Scholar
  8. 8.
    Moreno Diaz de la Espina S, Alverca E, Cuadrado A, Franca S (2005) Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 84:137149CrossRefGoogle Scholar
  9. 9.
    Rizzo PJ (1985) Histones in protistan evolution. Biosystems 18:249262PubMedCrossRefGoogle Scholar
  10. 10.
    Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2:529534PubMedCrossRefGoogle Scholar
  11. 11.
    Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:123PubMedCrossRefGoogle Scholar
  12. 12.
    Nosek J, Tomaska L (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44:7384PubMedCrossRefGoogle Scholar
  13. 13.
    Kay A, Zoulim F (2007) Hepatitis B virus genetic variability and evolution. Virus Res 127:164176PubMedCrossRefGoogle Scholar
  14. 14.
    Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582590PubMedCrossRefGoogle Scholar
  15. 15.
    Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J (2011) Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 39:4202–4219Google Scholar
  16. 16.
    Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838849PubMedCrossRefGoogle Scholar
  17. 17.
    Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565576PubMedCrossRefGoogle Scholar
  18. 18.
    Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337365PubMedCrossRefGoogle Scholar
  19. 19.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221271PubMedGoogle Scholar
  20. 20.
    Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281285PubMedCrossRefGoogle Scholar
  21. 21.
    Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18:158162PubMedCrossRefGoogle Scholar
  22. 22.
    Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:21242129PubMedCrossRefGoogle Scholar
  23. 23.
    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254267PubMedCrossRefGoogle Scholar
  24. 24.
    Swithers KS, Gogarten JP, Fournier GP (2009) Trees in the web of life. J Biol 8:54PubMedCrossRefGoogle Scholar
  25. 25.
    Paz-Y-Mino CG, Espinosa A (2010) Integrating horizontal gene transfer and common descent to depict evolution and contrast it with “common design”. J Eukaryot Microbiol 57:1118CrossRefGoogle Scholar
  26. 26.
    Soria-Carrasco V, Castresana J (2008) Estimation of phylogenetic inconsistencies in the three domains of life. Mol Biol Evol 25:23192329PubMedCrossRefGoogle Scholar
  27. 27.
    Burleigh JG, Bansal MS, Eulenstein O, Hartmann S, Wehe A, Vision TJ (2010) Genome-scale phylogenetics: inferring the plant tree of life from 18,896 Gene Trees. Syst Biol 60:117–125Google Scholar
  28. 28.
    Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361375PubMedCrossRefGoogle Scholar
  29. 29.
    Ding G, Yu Z, Zhao J, Wang Z, Li Y, Xing X, Wang C, Liu L, Li Y (2008) Tree of life based on genome context networks. PLoS One 3:e3357PubMedCrossRefGoogle Scholar
  30. 30.
    Fukami-Kobayashi K, Minezaki Y, Tateno Y, Nishikawa K (2007) A tree of life based on protein domain organizations. Mol Biol Evol 24:11811189PubMedCrossRefGoogle Scholar
  31. 31.
    Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19PubMedCrossRefGoogle Scholar
  32. 32.
    Dagan T, Roettger M, Bryant D, Martin W (2010) Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2:379392PubMedCrossRefGoogle Scholar
  33. 33.
    Di Giulio M (2007) The evidence that the tree of life is not rooted within the Archaea is unreliable: a reply to Skophammer et al. Gene 394:105106PubMedCrossRefGoogle Scholar
  34. 34.
    Di Giulio M (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 401:108113PubMedCrossRefGoogle Scholar
  35. 35.
    Fournier GP, Gogarten JP (2010) Rooting the ribosomal tree of life. Mol Biol Evol 27:17921801PubMedCrossRefGoogle Scholar
  36. 36.
    Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130136PubMedCrossRefGoogle Scholar
  37. 37.
    Lake JA, Servin JA, Herbold CW, Skophammer RG (2008) Evidence for a new root of the tree of life. Syst Biol 57:835843PubMedCrossRefGoogle Scholar
  38. 38.
    Servin JA, Herbold CW, Skophammer RG, Lake JA (2008) Evidence excluding the root of the tree of life from the actinobacteria. Mol Biol Evol 25:14PubMedCrossRefGoogle Scholar
  39. 39.
    Skophammer RG, Herbold CW, Rivera MC, Servin JA, Lake JA (2006) Evidence that the root of the tree of life is not within the Archaea. Mol Biol Evol 23:16481651PubMedCrossRefGoogle Scholar
  40. 40.
    Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Evidence for a gram-positive, eubacterial root of the tree of life. Mol Biol Evol 24:17611768PubMedCrossRefGoogle Scholar
  41. 41.
    Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:17131731PubMedCrossRefGoogle Scholar
  42. 42.
    Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686727PubMedCrossRefGoogle Scholar
  43. 43.
    Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:83248329PubMedCrossRefGoogle Scholar
  44. 44.
    Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:1119PubMedCrossRefGoogle Scholar
  45. 45.
    Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669685PubMedCrossRefGoogle Scholar
  46. 46.
    Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667PubMedCrossRefGoogle Scholar
  47. 47.
    Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672689PubMedCrossRefGoogle Scholar
  48. 48.
    Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40:151160PubMedCrossRefGoogle Scholar
  49. 49.
    Koshland DEJ (2002) Special essay. The seven pillars of life. Science 295:22152216Google Scholar
  50. 50.
    McKay CP (2004) What is life – and how do we search for it in other worlds? PLoS Biol 2:E302PubMedCrossRefGoogle Scholar
  51. 51.
    Claverie JM, Abergel C (2009) Mimivirus and its virophage. Annu Rev Genet 43:4966PubMedCrossRefGoogle Scholar
  52. 52.
    Finsterbusch T, Mankertz A (2009) Porcine circoviruses – small but powerful. Virus Res 143:177183PubMedCrossRefGoogle Scholar
  53. 53.
    Trifonov V, Khiabanian H, Rabadan R (2009) Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N Engl J Med 361:115119PubMedCrossRefGoogle Scholar
  54. 54.
    Hartlieb B, Weissenhorn W (2006) Filovirus assembly and budding. Virology 344:6470PubMedCrossRefGoogle Scholar
  55. 55.
    Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647681PubMedCrossRefGoogle Scholar
  56. 56.
    Sun S, Rao VB, Rossmann MG (2010) Genome packaging in viruses. Curr Opin Struct Biol 20:114120PubMedCrossRefGoogle Scholar
  57. 57.
    Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29PubMedCrossRefGoogle Scholar
  58. 58.
    Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R, Douglas T, Young MJ (2009) Structural and functional studies of archaeal viruses. J Biol Chem 284:1259912603PubMedCrossRefGoogle Scholar
  59. 59.
    Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801812PubMedCrossRefGoogle Scholar
  60. 60.
    Swiss Institute of Bioinformatics, ViralZone.
  61. 61.
    Schulz HN, Jorgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105137PubMedCrossRefGoogle Scholar
  62. 62.
    West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:15751592PubMedCrossRefGoogle Scholar
  63. 63.
    Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660703PubMedCrossRefGoogle Scholar
  64. 64.
    Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917927PubMedCrossRefGoogle Scholar
  65. 65.
    de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM (2009) The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell 8:6572PubMedCrossRefGoogle Scholar
  66. 66.
    Ksiazek K (2010) Bacterial aging: from mechanistic basis to evolutionary perspective. Cell Mol Life Sci 67:31313137PubMedCrossRefGoogle Scholar
  67. 67.
    Minelli A, Fusco G (2010) Developmental plasticity and the evolution of animal complex life cycles. Philos Trans R Soc Lond B Biol Sci 365:631640PubMedCrossRefGoogle Scholar
  68. 68.
    Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:11021109PubMedCrossRefGoogle Scholar
  69. 69.
    Morozkina EV, Slutskaia ES, Fedorova TV, Tugai TI, Golubeva LI, Koroleva OV (2010) [Extremophilic microorganisms: biochemical adaptation and biotechnological application (review)] Prikl Biokhim Mikrobiol 46:520Google Scholar
  70. 70.
    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:10921101PubMedCrossRefGoogle Scholar
  71. 71.
  72. 72.
    The Tree of Life Web Project.
  73. 73.
    The Encyclopedia of Life.
  74. 74.
    Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B Biol Sci 359:623638PubMedCrossRefGoogle Scholar
  75. 75.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:65786583PubMedCrossRefGoogle Scholar
  76. 76.
    Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722732PubMedCrossRefGoogle Scholar
  77. 77.
    Koch AL (1996) What size should a bacterium be? A question of scale. Annu Rev Microbiol 50:317348PubMedCrossRefGoogle Scholar
  78. 78.
    Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19:R812-22PubMedCrossRefGoogle Scholar
  79. 79.
    Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214224PubMedCrossRefGoogle Scholar
  80. 80.
    Rosenberg SM (2009) Life, death, differentiation, and the multicellularity of bacteria. PLoS Genet 5:e1000418PubMedCrossRefGoogle Scholar
  81. 81.
    Bonner JT (1998) The origins of multicellularity Integ Bio 1:2736CrossRefGoogle Scholar
  82. 82.
    Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235251PubMedCrossRefGoogle Scholar
  83. 83.
    Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:3649PubMedCrossRefGoogle Scholar
  84. 84.
    Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:3950PubMedCrossRefGoogle Scholar
  85. 85.
    Kroos L (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41:1339PubMedCrossRefGoogle Scholar
  86. 86.
    Allers T, Mevarech M (2005) Archaeal genetics – the third way. Nat Rev Genet 6:5873PubMedCrossRefGoogle Scholar
  87. 87.
    Olsen GJ, Woese CR (1997) Archaeal genomics: an overview. Cell 89:991994PubMedCrossRefGoogle Scholar
  88. 88.
    Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmatata obscuriglobus. Proc Natl Acad Sci U S A 88:81848188PubMedCrossRefGoogle Scholar
  89. 89.
    Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299328PubMedCrossRefGoogle Scholar
  90. 90.
    Gowrishankar J, Harinarayanan R (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54:598603PubMedCrossRefGoogle Scholar
  91. 91.
    Zimmerman SB (2006) Shape and compaction of Escherichia coli nucleoids. J Struct Biol 156:255261PubMedCrossRefGoogle Scholar
  92. 92.
    Hinnebusch BJ, Bendich AJ (1997) The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J Bacteriol 179:22282237PubMedGoogle Scholar
  93. 93.
    Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:11291138PubMedCrossRefGoogle Scholar
  94. 94.
    Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211233PubMedCrossRefGoogle Scholar
  95. 95.
    Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58:625635PubMedCrossRefGoogle Scholar
  96. 96.
    Langston LD, O’Donnell M (2006) DNA replication: keep moving and don’t mind the gap. Mol Cell 23:155160PubMedCrossRefGoogle Scholar
  97. 97.
    Kanaar R, Wyman C, Rothstein R (2008) Quality control of DNA break metabolism: in the ‘end’, it’s a good thing. EMBO J 27:581588PubMedCrossRefGoogle Scholar
  98. 98.
    Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:393418PubMedCrossRefGoogle Scholar
  99. 99.
    Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185195PubMedCrossRefGoogle Scholar
  100. 100.
    Laub MT, Shapiro L, McAdams HH (2007) Systems biology of Caulobacter. Annu Rev Genet 41:429441PubMedCrossRefGoogle Scholar
  101. 101.
    Haeusser DP, Levin PA (2008) The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol 11:9499PubMedCrossRefGoogle Scholar
  102. 102.
    Thanbichler M (2010) Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harb Perspect Biol 2:a000331PubMedCrossRefGoogle Scholar
  103. 103.
    Brown PJ, Hardy GG, Trimble MJ, Brun YV (2009) Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 54:1101PubMedCrossRefGoogle Scholar
  104. 104.
    Sandman K, Pereira SL, Reeve JN (1998) Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 54:13501364PubMedCrossRefGoogle Scholar
  105. 105.
    Lee KC, Webb RI, Fuerst JA (2009) The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization. BMC Cell Biol 10:4PubMedCrossRefGoogle Scholar
  106. 106.
    Bernander R, Lundgren M, Ettema TJ (2010) Comparative and functional analysis of the archaeal cell cycle. Cell Cycle 9:794806PubMedCrossRefGoogle Scholar
  107. 107.
    Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of crenarchaeota: unity among diversity. J Bacteriol 190:53625367PubMedCrossRefGoogle Scholar
  108. 108.
    Coelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152170PubMedCrossRefGoogle Scholar
  109. 109.
    Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399451PubMedCrossRefGoogle Scholar
  110. 110.
    Mathur J (2004) Cell shape development in plants. Trends Plant Sci 9:583590PubMedCrossRefGoogle Scholar
  111. 111.
    Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19:R762-71PubMedCrossRefGoogle Scholar
  112. 112.
    Bornens M (2008) Organelle positioning and cell polarity. Nat Rev Mol Cell Biol 9:874886PubMedCrossRefGoogle Scholar
  113. 113.
    Fagarasanu A, Rachubinski RA (2007) Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 10:528538PubMedCrossRefGoogle Scholar
  114. 114.
    Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253257PubMedCrossRefGoogle Scholar
  115. 115.
    Horiike T, Hamada K, Kanaya S, Shinozawa T (2001) Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 3:210214PubMedCrossRefGoogle Scholar
  116. 116.
    Jekely G (2005) Glimpsing over the event horizon: evolution of nuclear pores and envelope. Cell Cycle 4:297299PubMedCrossRefGoogle Scholar
  117. 117.
    Lopez-Garcia P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28:525533PubMedCrossRefGoogle Scholar
  118. 118.
    Martin W (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630637PubMedCrossRefGoogle Scholar
  119. 119.
    Pennisi E (2004) Evolutionary biology. The birth of the nucleus. Science 305:766768Google Scholar
  120. 120.
    Poole A, Penny D (2001) Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol 3:E173-4PubMedCrossRefGoogle Scholar
  121. 121.
    Rotte C, Martin W (2001) Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol 3:E173-4PubMedCrossRefGoogle Scholar
  122. 122.
    Zimmer C (2009) Origins. On the origin of eukaryotes. Science 325:666668Google Scholar
  123. 123.
    Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:30273043PubMedCrossRefGoogle Scholar
  124. 124.
    Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318:14021407PubMedCrossRefGoogle Scholar
  125. 125.
    Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:14771486PubMedCrossRefGoogle Scholar
  126. 126.
    Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11:317328PubMedCrossRefGoogle Scholar
  127. 127.
    Anderson DJ, Hetzer MW (2008) The life cycle of the metazoan nuclear envelope. Curr Opin Cell Biol 20:386392PubMedCrossRefGoogle Scholar
  128. 128.
    Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178191PubMedCrossRefGoogle Scholar
  129. 129.
    Larijani B, Poccia DL (2009) Nuclear envelope formation: mind the gaps. Annu Rev Biophys 38:107124PubMedCrossRefGoogle Scholar
  130. 130.
    De Souza CP, Osmani SA (2009) Double duty for nuclear proteins – the price of more open forms of mitosis. Trends Genet 25:545554PubMedCrossRefGoogle Scholar
  131. 131.
    O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171181PubMedCrossRefGoogle Scholar
  132. 132.
    Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469479PubMedCrossRefGoogle Scholar
  133. 133.
    Teixeira MT, Gilson E (2005) Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res 13:535548PubMedCrossRefGoogle Scholar
  134. 134.
    Goldstein ST (1997) Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foramniferal Res 27:319328CrossRefGoogle Scholar
  135. 135.
    Mazumdar A, Mazumdar M (2002) How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 24:10121022PubMedCrossRefGoogle Scholar
  136. 136.
    Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308:591608PubMedCrossRefGoogle Scholar
  137. 137.
    Rohde LA, Heisenberg CP (2007) Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cytol 261:159192PubMedCrossRefGoogle Scholar
  138. 138.
    Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514522PubMedCrossRefGoogle Scholar
  139. 139.
    Baluska F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell Theory revised. Ann Bot 94:932PubMedCrossRefGoogle Scholar
  140. 140.
    Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470478PubMedCrossRefGoogle Scholar
  141. 141.
    Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:10631072PubMedCrossRefGoogle Scholar
  142. 142.
    Otto SP, Gerstein AC (2008) The evolution of haploidy and diploidy. Curr Biol 18:R1121-4PubMedCrossRefGoogle Scholar
  143. 143.
    Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN (2004) Polytene chromosomes: 70 years of genetic research. Int Rev Cytol 241:203275PubMedCrossRefGoogle Scholar
  144. 144.
    Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491517PubMedCrossRefGoogle Scholar
  145. 145.
    Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729748PubMedCrossRefGoogle Scholar
  146. 146.
    Moore CE, Archibald JM (2009) Nucleomorph genomes. Annu Rev Genet 43:251264PubMedCrossRefGoogle Scholar
  147. 147.
    Chalker DL (2008) Dynamic nuclear reorganization during genome remodeling of Tetrahymena. Biochim Biophys Acta 1783:21302136PubMedCrossRefGoogle Scholar
  148. 148.
    Valenzuela N (2009) Co-evolution of genomic structure and selective forces underlying sexual development and reproduction. Cytogenet Genome Res 127:232241PubMedCrossRefGoogle Scholar
  149. 149.
    Wilson MA, Makova KD (2009) Genomic analyses of sex chromosome evolution. Annu Rev Genomics Hum Genet 10:333354PubMedCrossRefGoogle Scholar
  150. 150.
    Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43:439465PubMedCrossRefGoogle Scholar
  151. 151.
    Buscaino A, Allshire R, Pidoux A (2010) Building centromeres: home sweet home or a nomadic existence? Curr Opin Genet Dev 20:118126PubMedCrossRefGoogle Scholar
  152. 152.
    Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:F33-8PubMedCrossRefGoogle Scholar
  153. 153.
    Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831838PubMedCrossRefGoogle Scholar
  154. 154.
    Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:12251243PubMedCrossRefGoogle Scholar
  155. 155.
    Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:713727PubMedCrossRefGoogle Scholar
  156. 156.
    van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175225PubMedCrossRefGoogle Scholar
  157. 157.
    Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87111PubMedCrossRefGoogle Scholar
  158. 158.
    Smith DR, Hua J, Lee RW (2010) Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet 56:427438PubMedCrossRefGoogle Scholar
  159. 159.
    Barbrook AC, Howe CJ, Kurniawan DP, Tarr SJ (2010) Organization and expression of organellar genomes. Philos Trans R Soc Lond B Biol Sci 365:785797PubMedCrossRefGoogle Scholar
  160. 160.
    Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709716PubMedCrossRefGoogle Scholar
  161. 161.
    Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477524PubMedCrossRefGoogle Scholar
  162. 162.
    Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:17271730PubMedCrossRefGoogle Scholar
  163. 163.
    Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237245PubMedCrossRefGoogle Scholar
  164. 164.
    Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586592PubMedCrossRefGoogle Scholar
  165. 165.
    Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol 238:59118PubMedCrossRefGoogle Scholar
  166. 166.
    Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:1932PubMedGoogle Scholar
  167. 167.
    Xu J (2005) The inheritance of organelle genes and genomes: patterns and mechanisms. Genome 48:951958PubMedCrossRefGoogle Scholar
  168. 168.
    Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet 23:465474PubMedCrossRefGoogle Scholar
  169. 169.
    Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:3950PubMedCrossRefGoogle Scholar
  170. 170.
    Miyamura S (2010) Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. J Plant Res 123:171184PubMedCrossRefGoogle Scholar
  171. 171.
    Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123:131138PubMedCrossRefGoogle Scholar
  172. 172.
    White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:49254942PubMedCrossRefGoogle Scholar
  173. 173.
    Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes – though this be madness, yet there’s method in’t. J Exp Bot 61:657671PubMedCrossRefGoogle Scholar
  174. 174.
    Aldridge C, Maple J, Moller SG (2005) The molecular biology of plastid division in higher plants. J Exp Bot 56:10611077PubMedCrossRefGoogle Scholar
  175. 175.
    Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557577PubMedCrossRefGoogle Scholar
  176. 176.
    Maple J, Moller SG (2007) Plastid division coordination across a double-membraned structure. FEBS Lett 581:21622167PubMedCrossRefGoogle Scholar
  177. 177.
    Natesan SK, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787797PubMedCrossRefGoogle Scholar
  178. 178.
    Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. J Exp Bot 58:1126PubMedCrossRefGoogle Scholar
  179. 179.
    Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101108PubMedCrossRefGoogle Scholar
  180. 180.
    Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:16611666PubMedCrossRefGoogle Scholar
  181. 181.
    Howe CJ, Nisbet RE, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:10351045PubMedCrossRefGoogle Scholar
  182. 182.
    Sato N, Terasawa K, Miyajima K, Kabeya Y (2003) Organization, developmental dynamics, and evolution of plastid nucleoids. Int Rev Cytol 232:217262PubMedCrossRefGoogle Scholar
  183. 183.
    Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279:1689516898PubMedCrossRefGoogle Scholar
  184. 184.
    Luch A (2005) Nature and nurture – lessons from chemical carcinogenesis. Nat Rev Cancer 5:113125PubMedCrossRefGoogle Scholar
  185. 185.
    De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169185PubMedCrossRefGoogle Scholar
  186. 186.
    Clancy S (2008) Genetic recombination. Nature Education 1:AGoogle Scholar
  187. 187.
    Goodier JL, Kazazian HHJ (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:2335PubMedCrossRefGoogle Scholar
  188. 188.
    O’Connor C (2008) Human chromosome translocations and cancer. Nature Education 1:AGoogle Scholar
  189. 189.
    Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711721PubMedCrossRefGoogle Scholar
  190. 190.
    King RW (2008) When 2 + 2 = 5: the origins and fates of aneuploid and tetraploid cells. Biochim Biophys Acta 1786:414PubMedGoogle Scholar
  191. 191.
    McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148161PubMedCrossRefGoogle Scholar
  192. 192.
    Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297308PubMedCrossRefGoogle Scholar
  193. 193.
    Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589605PubMedCrossRefGoogle Scholar
  194. 194.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440450PubMedCrossRefGoogle Scholar
  195. 195.
    Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610618PubMedCrossRefGoogle Scholar
  196. 196.
    Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:4759PubMedCrossRefGoogle Scholar
  197. 197.
    Graur D, Li W-H. (2000) Genes, genetic codes, and mutation, in fundamentals of molecular evolution pp 5–38, SinauerGoogle Scholar
  198. 198.
    Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:6577PubMedCrossRefGoogle Scholar
  199. 199.
    Mugal CF, von Grunberg HH, Peifer M (2009) Transcription-induced mutational strand bias and its effect on substitution rates in human genes. Mol Biol Evol 26:131142PubMedCrossRefGoogle Scholar
  200. 200.
    Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36:7597PubMedCrossRefGoogle Scholar
  201. 201.
    Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:1534PubMedCrossRefGoogle Scholar
  202. 202.
    Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8Google Scholar
  203. 203.
    Kondrashov FA, Kondrashov AS (2010) Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 365:11691176PubMedCrossRefGoogle Scholar
  204. 204.
    Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267276PubMedCrossRefGoogle Scholar
  205. 205.
    Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 8:619631PubMedCrossRefGoogle Scholar
  206. 206.
    Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:1015CrossRefGoogle Scholar
  207. 207.
    Nakabach A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267Google Scholar
  208. 208.
    Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:14011404PubMedCrossRefGoogle Scholar
  209. 209.
    Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195205PubMedCrossRefGoogle Scholar
  210. 210.
    Whitney KD, Garland TJ (2010) Did genetic drift drive increases in genome complexity? PLoS Genet 6Google Scholar
  211. 211.
    Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699708PubMedCrossRefGoogle Scholar
  212. 212.
    Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719724PubMedCrossRefGoogle Scholar
  213. 213.
    Manolio TA (2009) Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI’s office of population genomics. Pharmacogenomics 10:235241PubMedCrossRefGoogle Scholar
  214. 214.
    Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452462PubMedCrossRefGoogle Scholar
  215. 215.
    Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836846PubMedCrossRefGoogle Scholar
  216. 216.
    Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725732PubMedCrossRefGoogle Scholar
  217. 217.
    Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:38593866PubMedCrossRefGoogle Scholar
  218. 218.
    Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737746PubMedCrossRefGoogle Scholar
  219. 219.
    Dierssen M, Herault Y, Estivill X (2009) Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 89:887920PubMedCrossRefGoogle Scholar
  220. 220.
    Aplan PD (2006) Causes of oncogenic chromosomal translocation. Trends Genet 22:4655PubMedCrossRefGoogle Scholar
  221. 221.
    Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:8597PubMedCrossRefGoogle Scholar
  222. 222.
    Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437455PubMedCrossRefGoogle Scholar
  223. 223.
    Brookes AJ (1999) The essence of SNPs. Gene 234:177186PubMedCrossRefGoogle Scholar
  224. 224.
    Zhang J (2003) Evolution by gene duplication: An update. Trends Ecol Evol 18:292298CrossRefGoogle Scholar
  225. 225.
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551564PubMedCrossRefGoogle Scholar
  226. 226.
    Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:1931PubMedCrossRefGoogle Scholar
  227. 227.
    Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2:E206PubMedCrossRefGoogle Scholar
  228. 228.
    Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123151PubMedCrossRefGoogle Scholar
  229. 229.
    Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328335PubMedCrossRefGoogle Scholar
  230. 230.
    Marques-Bonet T, Girirajan S, Eichler EE (2009) The origins and impact of primate segmental duplications. Trends Genet 25:443454PubMedCrossRefGoogle Scholar
  231. 231.
    Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:24532465PubMedCrossRefGoogle Scholar
  232. 232.
    Brouwer JR, Willemsen R, Oostra BA (2009) Microsatellite repeat instability and neurological disease. Bioessays 31:7183PubMedCrossRefGoogle Scholar
  233. 233.
    Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451481PubMedCrossRefGoogle Scholar
  234. 234.
    Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762775PubMedCrossRefGoogle Scholar
  235. 235.
    Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121152PubMedCrossRefGoogle Scholar
  236. 236.
    Myers PZ (2008) Synteny: inferring ancestral genomes. Nature Education 1:AGoogle Scholar
  237. 237.
    Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23(4):387PubMedCrossRefGoogle Scholar
  238. 238.
    Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950962PubMedCrossRefGoogle Scholar
  239. 239.
    Ehrlich J, Sankoff D, Nadeau JH (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289296PubMedGoogle Scholar
  240. 240.
    Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F (2003) ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:6367PubMedCrossRefGoogle Scholar
  241. 241.
    Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752763PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.European Molecular Biology Laboratory (EMBL)HeidelbergGermany

Personalised recommendations