Skip to main content

Genome Evolution in Outcrossing Versus Selfing Versus Asexual Species

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 855))

Abstract

A major current molecular evolution challenge is to link comparative genomic patterns to species’ biology and ecology. Breeding systems are pivotal because they affect many population genetic processes, and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems—outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. However, while asexual species essentially conform to theoretical predictions, the situation is less simple in selfing species. We discuss the possible reasons to potentially explain this paradox. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lynch M (2007) The origin of genome architecture. 1 edn. Sinauer, Sunderland.

    Google Scholar 

  2. Nikolaev SI, Montoya-Burgos JI, Popadin K, Parand L, Margulies EH, Antonarakis SE (2007) Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. Proc Natl Acad Sci USA 104 (51):20443–20448.

    CAS  PubMed  Google Scholar 

  3. Popadin K, Polishchuk LV, Mamirova L, Knorre D, Gunbin K (2007) Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. Proc Natl Acad Sci USA 104 (33):13390–13395.

    CAS  PubMed  Google Scholar 

  4. Foltz DW (2003) Invertebrate species with nonpelagic larvae have elevated levels of nonsynonymous substitutions and reduced nucleotide diversities. J Mol Evol 57 (6):607–612.

    CAS  PubMed  Google Scholar 

  5. Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proc Biol Sci 272 (1578):2277–2282.

    CAS  PubMed  Google Scholar 

  6. Jarne P, Auld JR (2006) Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60 (9):1816–1824.

    PubMed  Google Scholar 

  7. Vogler DW, Kaliz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55 (1):202–204.

    CAS  PubMed  Google Scholar 

  8. Haldane JBS (1932) The causes of Evolution, vol 1. 1 edn. Princeton University Press, Princeton.

    Google Scholar 

  9. Balloux F, Lehmann L, de Meeus T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164 (4):1635–1644.

    PubMed  Google Scholar 

  10. Simon JC, Delmotte F, Rispe C, Crease TJ (2003) Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Lin Soc 79:151–163.

    Google Scholar 

  11. Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169 (1):169–182.

    Google Scholar 

  12. Maynard-Smith J (1978) The Evolution of Sex. Cambridge University Press, Cambridge.

    Google Scholar 

  13. Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–354.

    Google Scholar 

  14. Wright S, Ness RW, Foxe JP, Barrett SC (2008) Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci 169 (1):105–118.

    Google Scholar 

  15. Nordborg M (2000) Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics 154 (2):923–929.

    CAS  PubMed  Google Scholar 

  16. Flint-Garcia SA, Thornsberry JM, Buckler ESt (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374.

    Google Scholar 

  17. Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci 273 (1604):3011–3019.

    PubMed  Google Scholar 

  18. Pollak E (1987) On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics 117 (2):353–360.

    CAS  Google Scholar 

  19. Haag CR, Roze D (2007) Genetic load in sexual and asexual diploids: segregation, dominance and genetic drift. Genetics 176 (3):1663–1678.

    PubMed  Google Scholar 

  20. Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497.

    CAS  PubMed  Google Scholar 

  21. Haag CR, Ebert D (2004) A new hypothesis to explain geographic parthenogenesis. Ann Zool Fennici 41:539–544.

    Google Scholar 

  22. Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56 (12):2368–2373.

    PubMed  Google Scholar 

  23. Gordo I, Charlesworth B (2001) Genetic linkage and molecular evolution. Curr Biol 11 (17):R684–686.

    CAS  PubMed  Google Scholar 

  24. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351 (1345):1291–1298.

    Google Scholar 

  25. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13 (5):1143–1155.

    CAS  PubMed  Google Scholar 

  26. Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Lin Soc 79:69–84.

    Google Scholar 

  27. Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18 (7):337–340.

    CAS  PubMed  Google Scholar 

  28. Hellmann I, Ebersberger I, Ptak SE, Paabo S, Przeworski M (2003) A neutral explanation for the correlation of diversity with recombination rates in humans. Am J Hum Genet 72 (6):1527–1535.

    CAS  PubMed  Google Scholar 

  29. Longman-Jacobsen N, Williamson JF, Dawkins RL, Gaudieri S (2003) In polymorphic genomic regions indels cluster with nucleotide polymorphism: Quantum Genomics. Gene 312:257–261.

    CAS  PubMed  Google Scholar 

  30. Tian D, Wang Q, Zhang P, Araki H, Yang S, Kreitman M, Nagylaki T, Hudson R, Bergelson J, Chen JQ (2008) Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455 (7209):105–108.

    CAS  PubMed  Google Scholar 

  31. Hollister JD, Ross-Ibarra J, Gaut BS (2010) Indel-associated mutation rate varies with mating system in flowering plants. Mol Biol Evol 27 (2):409–416.

    Google Scholar 

  32. Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713–719.

    CAS  PubMed  Google Scholar 

  33. Paland S, Lynch M (2006) Transitions to asexuality result in excess amino acid substitutions. Science 311 (5763):990–992.

    CAS  PubMed  Google Scholar 

  34. Johnson SG, Howard RS (2007) Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 61 (11):2728–2735.

    PubMed  Google Scholar 

  35. Neiman M, Hehman G, Miller JT, Logsdon JM, Jr., Taylor DR (2010) Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol Biol Evol 27 (4):954–963.

    CAS  PubMed  Google Scholar 

  36. Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19 (9):1407–1420.

    CAS  PubMed  Google Scholar 

  37. Haudry A, Cenci A, Guilhaumon C, Paux E, Poirier S, Santoni S, David J, GlÕmin S (2008) Mating system and recombination affect molecular evolution in four Triticeae species. Genet Res 90 (1):97–109.

    Google Scholar 

  38. Escobar JS, Cenci A, Bolognini J, Haudry A, Laurent S, David J, Glemin S (2010) An integrative test of the dead-end hypothesis of selfing evolution in Triticeae (poaceae). Evolution 64 (10):2855–2872.

    Google Scholar 

  39. Cutter AD, Wasmuth JD, Washington NL (2008) Patterns of molecular evolution in Caenorhabditis preclude ancient origins of selfing. Genetics 178 (4):2093–2104.

    CAS  PubMed  Google Scholar 

  40. Slotte T, Foxe JP, Hazzouri KM, Wright SI (2010) Genome-wide evidence for efficient positive and purifying selection in Capsella grandiflora, a plant species with a large effective population size. Mol Biol Evol 27 (8): 1813–1821.

    CAS  PubMed  Google Scholar 

  41. Charlesworth D, Morgan MT, Charlesworth B (1993) Mutation accumulation in finite outbreeding and inbreeding populations. Genet Res 61:39–56.

    Google Scholar 

  42. Hill WG, Robertson AW (1966) The effect of genetic linkage on the limits to artificial selection. Genet Res 8:269–294.

    CAS  PubMed  Google Scholar 

  43. Bullaughey K, Przeworski M, Coop G (2008) No effect of recombination on the efficacy of natural selection in primates. Genome Res 18 (4):544–554.

    CAS  PubMed  Google Scholar 

  44. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B (2007) Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol 8 (2):R18.

    PubMed  Google Scholar 

  45. Charlesworth B (1992) Evolutionary rates in partially self-fertilizing species. Am Nat 140 (1):126–148.

    CAS  PubMed  Google Scholar 

  46. Glémin S (2007) Mating systems and the efficacy of selection at the molecular level. Genetics 177 (2):905–916.

    PubMed  Google Scholar 

  47. Charlesworth B, Charlesworth D (1997) Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet Res 70 (1):63–73.

    CAS  PubMed  Google Scholar 

  48. Kirkpatrick M, Jenkins CD (1989) Genetic segregation and the maintenance of sexual reproduction. Nature 339 (6222):300–301.

    CAS  PubMed  Google Scholar 

  49. Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7 (8):645–653.

    CAS  PubMed  Google Scholar 

  50. Eyre-Walker A, Keightley PD (2009) Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol 26 (9):2097–2108.

    CAS  PubMed  Google Scholar 

  51. Mandegar MA, Otto SP (2007) Mitotic recombination counteracts the benefits of genetic segregation. Proc Biol Sci 274 (1615):1301–1307.

    PubMed  Google Scholar 

  52. Omilian AR, Cristescu ME, Dudycha JL, Lynch M (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 103 (49):18638–18643.

    CAS  PubMed  Google Scholar 

  53. Roze D, Lenormand T (2005) Self-fertilization and the evolution of recombination. Genetics 170:841–857.

    CAS  PubMed  Google Scholar 

  54. Ross-Ibarra J (2007) Genome size and recombination in angiosperms: a second look. J Evol Biol 20 (2):800–806.

    CAS  PubMed  Google Scholar 

  55. Dawson KJ (1998) Evolutionarily stable mutation rates. J Theor Biol 194 (1):143–157.

    CAS  PubMed  Google Scholar 

  56. Kondrashov AS (1995) Modifiers of Mutation-Selection Balance – General-Approach and the Evolution of Mutation-Rates. Genet Res 66 (1):53–69.

    Google Scholar 

  57. Lynch M (2010) Evolution of the mutation rate. Trends Genet 26 (8):345–352.

    CAS  PubMed  Google Scholar 

  58. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105 (13):5139–5144.

    CAS  PubMed  Google Scholar 

  59. Schoen DJ (2005) Deleterious mutation in related species of the plant genus Amsinckia with contrasting mating systems. Evolution 59 (11):2370–2377.

    PubMed  Google Scholar 

  60. Baer CF, Joyner-Matos J, Ostrow D, Grigaltchik V, Salomon MP, Upadhyay A (2010) Rapid decline in fitness of mutation accumulation lines of gonochoristic (outcrossing) Caenorhabditis nematodes. Evolution 64 (11):3242–3253.

    PubMed  Google Scholar 

  61. Brandvain Y, Haig D (2005) Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat 166 (3):330–338.

    PubMed  Google Scholar 

  62. Burt A, Trivers R (1998) Selfish DNA and breeding systems in plants. Proc R Soc Lond B 265:141–146.

    Google Scholar 

  63. Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3 (2):137–144.

    Google Scholar 

  64. Palopoli MF, Rockman MV, TinMaung A, Ramsay C, Curwen S, Aduna A, Laurita J, Kruglyak L (2008) Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature 454 (7207):1019–1022.

    CAS  PubMed  Google Scholar 

  65. Cutter AD (2008) Reproductive evolution: symptom of a selfing syndrome. Curr Biol 18 (22):R1056–1058.

    CAS  PubMed  Google Scholar 

  66. Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive darwinian selection at the imprinted MEDEA locus in plants. Nature 448 (7151):349–352.

    CAS  PubMed  Google Scholar 

  67. Kawabe A, Fujimoto R, Charlesworth D (2007) High diversity due to balancing selection in the promoter region of the Medea gene in Arabidopsis lyrata. Curr Biol 17 (21):1885–1889.

    CAS  PubMed  Google Scholar 

  68. Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117 (1): 3–16.

    CAS  PubMed  Google Scholar 

  69. Houliston GJ, Olson MS (2006) Nonneutral evolution of organelle genes in Silene vulgaris. Genetics 174 (4):1983–1994.

    CAS  PubMed  Google Scholar 

  70. Ingvarsson PK, Taylor DR (2002) Genealogical evidence for epidemics of selfish genes. Proc Natl Acad Sci USA 99 (17):11265–11269.

    CAS  PubMed  Google Scholar 

  71. Touzet P, Delph LF (2009) The effect of breeding system on polymorphism in mitochondrial genes of Silene. Genetics 181 (2): 631–644.

    CAS  PubMed  Google Scholar 

  72. Foxe JP, Wright SI (2009) Signature of diversifying selection on members of the pentatricopeptide repeat protein family in Arabidopsis lyrata. Genetics 183 (2):663–672, 661SI-668SI.

    Google Scholar 

  73. Marais G (2003) Biased gene conversion: implications for genome and sex evolution. Trends Genet 19 (6):330–338.

    CAS  PubMed  Google Scholar 

  74. Spencer CC, Deloukas P, Hunt S, Mullikin J, Myers S, Silverman B, Donnelly P, Bentley D, McVean G (2006) The influence of recombination on human genetic diversity. PLoS Genet 2 (9):e148.

    PubMed  Google Scholar 

  75. Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311.

    CAS  PubMed  Google Scholar 

  76. Galtier N, Duret L (2007) Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet 23 (6):273–277.

    CAS  PubMed  Google Scholar 

  77. Marais G, Mouchiroud D, Duret L (2001) Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98 (10):5688–5692.

    CAS  PubMed  Google Scholar 

  78. Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21 (6): 984–990.

    CAS  PubMed  Google Scholar 

  79. Marais G, Charlesworth B, Wright SI (2004) Recombination and base composition: the case of the highly self-fertilizing plant Arabidopsis thaliana. Genome Biol 5 (7):R45.

    CAS  PubMed  Google Scholar 

  80. Wright SI, Iorgovan G, Misra S, Mokhtari M (2007) Neutral evolution of synonymous base composition in the Brassicaceae. J Mol Evol 64 (1):136–141.

    CAS  PubMed  Google Scholar 

  81. Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154:1819–1825.

    CAS  PubMed  Google Scholar 

  82. Wong GK, Wang J, Tao L, Tan J, Zhang J, Passey DA, Yu J (2002) Compositional gradients in Gramineae genes. Genome Res 12 (6):851–856.

    CAS  PubMed  Google Scholar 

  83. Wang HC, Singer GA, Hickey DA (2004) Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 21 (1):90–96.

    PubMed  Google Scholar 

  84. Dolgin ES, Charlesworth B (2006) The fate of transposable elements in asexual populations. Genetics 174 (2):817–827.

    CAS  PubMed  Google Scholar 

  85. Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77 (3):261–275.

    CAS  PubMed  Google Scholar 

  86. Zeyl C, Bell G, Green DM (1996) Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143 (4):1567–1577.

    CAS  PubMed  Google Scholar 

  87. Goddard MR, Greig D, Burt A (2001) Outcrossed sex allows a selfish gene to invade yeast populations. Proc Biol Sci 268 (1485): 2537–2542.

    CAS  PubMed  Google Scholar 

  88. Sullender BW, Crease TJ (2001) The behavior of a Daphnia pulex transposable element in cyclically and obligately parthenogenetic populations. J Mol Evol 53 (1):63–69.

    CAS  PubMed  Google Scholar 

  89. Valizadeh P, Crease TJ (2008) The association between breeding system and transposable element dynamics in Daphnia pulex. J Mol Evol 66 (6):643–654.

    CAS  PubMed  Google Scholar 

  90. Schaack S, Pritham EJ, Wolf A, Lynch M (2010) DNA transposon dynamics in populations of Daphnia pulex with and without sex. P Roy Soc B-Biol Sci 277 (1692):2381–2387.

    CAS  Google Scholar 

  91. Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97 (26): 14473–14477.

    CAS  PubMed  Google Scholar 

  92. Arkhipova IR, Meselson M (2005) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 102 (33):11781–11786.

    CAS  PubMed  Google Scholar 

  93. Arkhipova I, Meselson M (2005) Deleterious transposable elements and the extinction of asexuals. Bioessays 27 (1):76–85.

    CAS  PubMed  Google Scholar 

  94. Matzk F, Hammer K, Schubert I (2003) Coevolution of apomixis and genome size within the genus Hypericum. Sex Plant Reprod 16:51–58.

    Google Scholar 

  95. Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107 (1–3):139–148.

    CAS  PubMed  Google Scholar 

  96. Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien MA (2007) The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 20 (3):1056–1072.

    CAS  PubMed  Google Scholar 

  97. Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis. Genetics 158 (3): 1279–1288.

    CAS  PubMed  Google Scholar 

  98. Trivers R, Burt A, Palestis BG (2004) B chromosomes and genome size in flowering plants. Genome 47 (1):1–8.

    CAS  PubMed  Google Scholar 

  99. Whitney KD, Baack EJ, Hamrick JL, Godt MJ, Barringer BC, Bennett MD, Eckert CG, Goodwillie C, Kalisz S, Leitch IJ, Ross-Ibarra J (2010) A role for nonadaptive processes in plant genome size evolution? Evolution 64 (7):2097–2109.

    Google Scholar 

  100. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94 (6):897–911.

    CAS  PubMed  Google Scholar 

  101. Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88 (4):221–228.

    PubMed  Google Scholar 

  102. Ritland K, Jain S (1981) A Model for the Estimation of Outcrossing Rate and Gene-Frequencies Using N Independent Loci. Heredity 47 (Aug):35–52.

    Google Scholar 

  103. Nordborg MD, P. (1997) The coalescent process with selfing. Genetics 146 (3): 1185–1195.

    Google Scholar 

  104. Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176 (3): 1635–1651.

    PubMed  Google Scholar 

  105. Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20 (4):194–201.

    PubMed  Google Scholar 

  106. Bomblies K, Yant L, Laitinen RA, Kim ST, Hollister JD, Warthmann N, Fitz J, Weigel D (2010) Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genet 6 (3):e1000890.

    PubMed  Google Scholar 

  107. Grimsley N, Pequin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27 (1):47–54.

    CAS  PubMed  Google Scholar 

  108. Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral JP, Bouget FY, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103 (31): 11647–11652.

    CAS  PubMed  Google Scholar 

  109. Takebayashi N, Morrell PL (2001) Is self-fertilization an evolutionary deed end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am J Bot 88 (7):1143–1150.

    CAS  PubMed  Google Scholar 

  110. Goldberg EE, Igic B (2008) On phylogenetic tests of irreversible evolution. Evolution 62 (11):2727–2741.

    PubMed  Google Scholar 

  111. Welch DM, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288 (5469):1211–1215.

    CAS  Google Scholar 

  112. Schaefer I, Domes K, Heethoff M, Schneider K, Schon I, Norton RA, Scheu S, Maraun M (2006) No evidence for the ‘Meselson effect’ in parthenogenetic oribatid mites (Oribatida, Acari). J Evol Biol 19 (1):184–193.

    CAS  PubMed  Google Scholar 

  113. Schon I, Martens K (2003) No slave to sex. Proc R Soc Lond B 270 (1517):827–833.

    Google Scholar 

  114. Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH (2006) The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol 23 (9): 1741–1750.

    CAS  PubMed  Google Scholar 

  115. Tang C, Toomajian C, Sherman-Broyles S, Plagnol V, Guo YL, Hu TT, Clark RM, Nasrallah JB, Weigel D, Nordborg M (2007) The evolution of selfing in Arabidopsis thaliana. Science 317 (5841):1070–1072.

    CAS  PubMed  Google Scholar 

  116. Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI (2009) Recent speciation associated with the evolution of selfing in Capsella. Proc Natl Acad Sci USA 106 (13):5241–5245.

    CAS  PubMed  Google Scholar 

  117. Guo YL, Bechsgaard JS, Slotte T, Neuffer B, Lascoux M, Weigel D, Schierup MH (2009) Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck. Proc Natl Acad Sci USA 106 (13):5246–5251.

    CAS  PubMed  Google Scholar 

  118. Judson OP, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11 (2):41–46.

    CAS  PubMed  Google Scholar 

  119. Igic B, Bohs L, Kohn JR (2006) Ancient polymorphism reveals unidirectional breeding system shifts. Proc Natl Acad Sci USA 103 (5):1359–1363.

    CAS  PubMed  Google Scholar 

  120. Ferrer MM, Good-Avila SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytol 173 (2):401–414.

    PubMed  Google Scholar 

  121. Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igic B (2010) Species selection maintains self-incompatibility. Science 330 (6003):493–495.

    CAS  PubMed  Google Scholar 

  122. Fitzjohn RG, Maddison WP, Otto SP (2009) Estimating Trait-Dependent Speciation and Extinction Rates from Incompletely Resolved Phylogenies. Syst Biol 58 (6):595–611.

    PubMed  Google Scholar 

  123. Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation and extinction. Syst Biol 56 (5): 701–710.

    PubMed  Google Scholar 

  124. Glémin S (2003) How are deleterious mutations purged? Drift versus nonrandom mating. Evolution 57 (12):2678–2687.

    PubMed  Google Scholar 

  125. Richards AJ (1997) Plant breeding systems. 2 edn. Chapman & Hall Ltd, London.

    Google Scholar 

  126. Igic B, Kohn JR (2006) The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60 (5): 1098–1103.

    PubMed  Google Scholar 

  127. Orr HA, Unckless RL (2008) Population extinction and the genetics of adaptation. Am Nat 172 (2):160–169.

    PubMed  Google Scholar 

  128. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268.

    Google Scholar 

  129. Glémin S (2010) Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 185 (3):939–959.

    Google Scholar 

  130. Mark Welch DB, Meselson MS (2001) Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci USA 98, 6720–6724

    CAS  PubMed  Google Scholar 

  131. Barraclough TG, Fontaneto D, Ricci C, Herniou EA (2007) Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol Biol Evol 24, 1952–1962

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for helpful comments to improve the manuscript. This work was supported by ARCAD, a flagship project of Agropolis Fondation, an ERC grant (PopPhyl) to N.G., and the CoGeBi program (grant number ANR-08-GENM-036-01). This publication is the contribution ISEM 2012-006 of the Institut des Sciences de l’Evolution de Montpellier (UMR 5554—CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Galtier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Glémin, S., Galtier, N. (2012). Genome Evolution in Outcrossing Versus Selfing Versus Asexual Species. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 855. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-582-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-582-4_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-581-7

  • Online ISBN: 978-1-61779-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics