Skip to main content

Assessment of Neurovascular Coupling

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Animal models are of great importance for studies on regional cerebral blood flow (rCBF) regulation in the normal and diseased brain. The complex interplay among neuronal, metabolic, and vascular signaling cascades in the regulation of brain blood flow requires its study in the intact living brain. This chapter provides a description of animal surgery, and explains how to implant cranial windows in order to investigate mechanisms of neurovascular coupling. Frequently used methods for the assessment of rCBF in response to neuronal depolarization are explained.

Cecilia Nicoletti and Nikolas Offenhauser contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  2. Dreier JP, Korner K, Ebert N, Gorner A, Rubin I, Back T, Lindauer U, Wolf T, Villringer A, Einhaupl KM, Lauritzen M, Dirnagl U (1998) Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab 18:978–990

    Article  PubMed  CAS  Google Scholar 

  3. Hubschmann OR, Kornhauser D (1980) Cortical cellular response in acute subarachnoid hemorrhage. J Neurosurg 52:456–462

    Article  PubMed  CAS  Google Scholar 

  4. Busch E, Beaulieu C, de Crespigny A, Moseley ME (1998) Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 29:2155–2161

    Article  PubMed  CAS  Google Scholar 

  5. Windmuller O, Lindauer U, Foddis M, Einhaupl KM, Dirnagl U, Heinemann U, Dreier JP (2005) Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO. Brain 128:2042–2051

    Article  PubMed  Google Scholar 

  6. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237

    Article  PubMed  Google Scholar 

  7. Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059

    Article  PubMed  CAS  Google Scholar 

  8. Somjen GG (2004) Ions in the brain. Oxford University Press, Oxford

    Google Scholar 

  9. Mies G, Paschen W (1984) Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 84:249–258

    Article  PubMed  CAS  Google Scholar 

  10. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreading depression theory. Brain 117:199–210

    Article  PubMed  Google Scholar 

  11. Hadjikhani N, Sanchez DR, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98:4687–4692

    Article  PubMed  CAS  Google Scholar 

  12. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira-Ferreira AI, Fabricius M, Hartings JA, Vajkoczy P, Lauritzen M, Dirnagl U, Bohner G, Strong AJ (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132:1866–1881

    Article  PubMed  Google Scholar 

  13. Dreier JP, Petzold G, Tille K, Lindauer U, Arnold G, Heinemann U, Einhaupl KM, Dirnagl U (2001) Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats. J Physiol 531:515–526

    Article  PubMed  CAS  Google Scholar 

  14. Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54:591–598

    Article  PubMed  CAS  Google Scholar 

  15. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhaupl KM, Victorov I, Dirnagl U (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93:658–666

    Article  PubMed  CAS  Google Scholar 

  16. Dreier JP, Windmuller O, Petzold G, Lindauer U, Einhaupl KM, Dirnagl U (2002) Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery 51:1457–1465

    PubMed  Google Scholar 

  17. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De PV, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  PubMed  CAS  Google Scholar 

  18. Xu HT, Pan F, Yang G, Gan WB (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  PubMed  CAS  Google Scholar 

  19. Dalkara T, Irikura K, Huang Z, Panahian N, Moskowitz MA (1995) Cerebrovascular responses under controlled and monitored physiological conditions in the anesthetized mouse. J Cereb Blood Flow Metab 15:631–638

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci USA 107:22290–22295

    Article  PubMed  CAS  Google Scholar 

  21. Dreier JP, Kleeberg J, Petzold G, Priller J, Windmuller O, Orzechowski HD, Lindauer U, Heinemann U, Einhaupl KM, Dirnagl U (2002) Endothelin-1 potently induces Leao’s cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura? Brain 125:102–112

    Article  PubMed  Google Scholar 

  22. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG (2007) Relationship between neural, vascular, and BOLD signals in isoflurane-­anesthetized rat somatosensory cortex. Cereb Cortex 17:942–950

    Article  PubMed  Google Scholar 

  23. Masamoto K, Fukuda M, Vazquez A, Kim SG (2009) Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur J Neurosci 30:242–250

    Article  PubMed  Google Scholar 

  24. Lindauer U, Villringer A, Dirnagl U (1993) Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am J Physiol 264:H1223–H1228

    PubMed  CAS  Google Scholar 

  25. Bonvento G, Charbonne R, Correze JL, Borredon J, Seylaz J, Lacombe P (1994) Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research? Brain Res 665:213–221

    Article  PubMed  CAS  Google Scholar 

  26. Morii S, Ngai AC, Winn HR (1986) Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats. J Cereb Blood Flow Metab 6:34–41

    Article  PubMed  CAS  Google Scholar 

  27. Lindauer U, Villringer A, Dirnagl U (1993) Characterization of CBF response to somatosensory stimulation – model and influence of anesthetics. Am J Physiol 264:H1223–H1228

    PubMed  CAS  Google Scholar 

  28. Offenhauser N, Thomsen K, Caesar K, Lauritzen M (2005) Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol 565:279–294

    Article  PubMed  CAS  Google Scholar 

  29. Fabricius M, Lauritzen M (1996) Laser-Doppler evaluation of rat brain microcirculation: comparison with the [14C]-iodoantipyrine method suggests discordance during cerebral blood flow increases. J Cereb Blood Flow Metab 16:156–161

    Article  PubMed  CAS  Google Scholar 

  30. Lauritzen M, Fabricius M (1995) Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex. Neuroreport 6:1271–1273

    Article  PubMed  CAS  Google Scholar 

  31. Leao AA (1944) Pial circulation and spreading depression activity in the cerebral cortex. J Neurophysiol 7:391–396

    Google Scholar 

  32. Lauritzen M, Jorgensen MB, Diemer NH, Gjedde A, Hansen AJ (1982) Persistent oligemia of rat cerebral cortex in the wake of spreading depression. Ann Neurol 12:469–474

    Article  PubMed  CAS  Google Scholar 

  33. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201

    Article  PubMed  CAS  Google Scholar 

  34. Dunn AK, Devor A, Bolay H, Andermann ML, Moskowitz MA, Dale AM, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30

    Article  PubMed  CAS  Google Scholar 

  35. Liu ZM, Schmidt KF, Sicard KM, Duong TQ (2004) Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med 52:277–285

    Article  PubMed  Google Scholar 

  36. Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762

    Article  PubMed  CAS  Google Scholar 

  37. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22:R35–R66

    Article  PubMed  CAS  Google Scholar 

  38. Rajan V, Varghese B, van Leeuwen TG, Steenbergen W (2009) Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci 24:269–283

    Article  PubMed  Google Scholar 

  39. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596

    Article  PubMed  CAS  Google Scholar 

  40. Haberl RL, Heizer ML, Marmarou A, Ellis EF (1989) Laser-Doppler assessment of brain microcirculation: effect of systemic alterations. Am J Physiol 256:H1247–H1254

    PubMed  CAS  Google Scholar 

  41. Barfod C, Akgoren N, Fabricius M, Dirnagl U, Lauritzen M (1997) Laser-Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation. Acta Physiol Scand 160:123–132

    Article  PubMed  CAS  Google Scholar 

  42. Fabricius M, Akgoren N, Dirnagl U, Lauritzen M (1997) Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry: a pilot study. J Cereb Blood Flow Metab 17:1326–1336

    Article  PubMed  CAS  Google Scholar 

  43. Akgoren N, Mathiesen C, Rubin I, Lauritzen M (1997) Laminar analysis of activity-­dependent increases of CBF in rat cerebellar cortex: dependence on synaptic strength. Am J Physiol 273:H1166–H1176

    PubMed  CAS  Google Scholar 

  44. Caesar K, Thomsen K, Lauritzen M (2003) Dissociation of spikes, synaptic activity, and activity-dependent increments in rat cerebellar blood flow by tonic synaptic inhibition. Proc Natl Acad Sci USA 100:16000–16005

    Article  PubMed  CAS  Google Scholar 

  45. Ayata C, Dunn AK, Gursoy-Ozdemir Y, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755

    Article  PubMed  Google Scholar 

  46. Durduran T, Burnett MG, Yu G, Zhou C, Furuya D, Yodh AG, Detre JA, Greenberg JH (2004) Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. J Cereb Blood Flow Metab 24:518–525

    Article  PubMed  Google Scholar 

  47. Royl G, Leithner C, Sellien H, Muller JP, Megow D, Offenhauser N, Steinbrink J, Kohl-Bareis M, Dirnagl U, Lindauer U (2006) Functional imaging with laser speckle contrast analysis: vascular compartment analysis and correlation with laser Doppler flowmetry and somatosensory evoked potentials. Brain Res 1121:95–103

    Article  PubMed  CAS  Google Scholar 

  48. Strong AJ, Bezzina EL, Anderson PJ, Boutelle MG, Hopwood SE, Dunn AK (2006) Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations. J Cereb Blood Flow Metab 26:645–653

    Article  PubMed  Google Scholar 

  49. Zhou C, Shimazu T, Durduran T, Luckl J, Kimberg DY, Yu G, Chen XH, Detre JA, Yodh AG, Greenberg JH (2008) Acute functional recovery of cerebral blood flow after forebrain ischemia in rat. J Cereb Blood Flow Metab 28:1275–1284

    Article  PubMed  Google Scholar 

  50. Dunn AK, Devor A, Dale AM, Boas DA (2005) Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27:279–290

    Article  PubMed  Google Scholar 

  51. Weber B, Burger C, Wyss MT, von Schulthess GK, Scheffold F, Buck A (2004) Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur J Neurosci 20:2664–2670

    Article  PubMed  CAS  Google Scholar 

  52. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    Article  PubMed  CAS  Google Scholar 

  53. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364

    Article  PubMed  CAS  Google Scholar 

  54. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  55. Ba AM, Guiou M, Pouratian N, Muthialu A, Rex DE, Cannestra AF, Chen JW, Toga AW (2002) Multiwavelength optical intrinsic signal imaging of cortical spreading depression. J Neurophysiol 88:2726–2735

    Article  PubMed  Google Scholar 

  56. Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359

    Article  PubMed  CAS  Google Scholar 

  57. Nemoto M, Nomura Y, Sato C, Tamura M, Houkin K, Koyanagi I, Abe H (1999) Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation. J Cereb Blood Flow Metab 19:246–259

    Article  PubMed  CAS  Google Scholar 

  58. Lindauer U, Royl G, Leithner C, Kuhl M, Gold L, Gethmann J, Kohl-Bareis M, Villringer A, Dirnagl U (2001) No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. Neuroimage 13:988–1001

    Article  PubMed  CAS  Google Scholar 

  59. Mayhew J, Zheng Y, Hou Y, Vuksanovic B, Berwick J, Askew S, Coffey P (1999) Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain. Neuroimage 10:304–326

    Article  PubMed  CAS  Google Scholar 

  60. Kohl M, Lindauer U, Royl G, Kuhl M, Gold L, Villringer A, Dirnagl U (2000) Physical model for the spectroscopic analysis of cortical intrinsic optical signals. Phys Med Biol 45:3749–3764

    Article  PubMed  CAS  Google Scholar 

  61. Mayhew J, Johnston D, Berwick J, Jones M, Coffey P, Zheng Y (2000) Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex. Neuroimage 12:664–675

    Article  PubMed  CAS  Google Scholar 

  62. Jones M, Berwick J, Johnston D, Mayhew J (2001) Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage 13:1002–1015

    Article  PubMed  CAS  Google Scholar 

  63. Berwick J, Johnston D, Jones M, Martindale J, Redgrave P, McLoughlin N, Schiessl I, Mayhew JE (2005) Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci 22:1655–1666

    Article  PubMed  CAS  Google Scholar 

  64. Sheth SA, Nemoto M, Guiou MW, Walker MA, Toga AW (2005) Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity. J Cereb Blood Flow Metab 25:830–841

    Article  PubMed  Google Scholar 

  65. Royl G, Fuchtemeier M, Leithner C, Megow D, Offenhauser N, Steinbrink J, Kohl-Bareis M, Dirnagl U, Lindauer U (2008) Hypothermia effects on neurovascular coupling and cerebral metabolic rate of oxygen. Neuroimage 40:1523–1532

    Article  PubMed  Google Scholar 

  66. Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, Bacskai BJ, Dale AM, Boas DA (2007) Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35:89–104

    Article  PubMed  Google Scholar 

  67. Dirnagl U, Villringer A, Gebhart R, Haberl RL, Schmiedek P, Einhaupl KM (1991) Three-dimensional reconstruction of the rat brain cortical microcirculation in vivo. J Cereb Blood Flow Metab 11:353–360

    Article  PubMed  CAS  Google Scholar 

  68. Villringer A, Them A, Lindauer U, Einhaupl K, Dirnagl U (1994) Capillary perfusion of the rat brain cortex – an in vivo confocal microscopy study. Circ Res 75:55–62

    Article  PubMed  CAS  Google Scholar 

  69. Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci USA 95:15741–15746

    Article  PubMed  CAS  Google Scholar 

  70. Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086

    Article  PubMed  CAS  Google Scholar 

  71. Hirase H, Creso J, Buzsaki G (2004) Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience 128:209–216

    Article  PubMed  CAS  Google Scholar 

  72. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4:e22

    Article  PubMed  Google Scholar 

  73. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D (2007) Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA 104:365–370

    Article  PubMed  CAS  Google Scholar 

  74. Petzold GC, Albeanu DF, Sato TF, Murthy VN (2008) Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58:897–910

    Article  PubMed  CAS  Google Scholar 

  75. Chuquet J, Hollender L, Nimchinsky EA (2007) High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 27:4036–4044

    Article  PubMed  CAS  Google Scholar 

  76. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  77. Kerr JN, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205

    Article  PubMed  CAS  Google Scholar 

  78. Helmchen F, Kleinfeld D (2008) In vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy (Chapter 10). Methods Enzymol 444:231–254

    Article  PubMed  Google Scholar 

  79. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by grants of the Deutsche Forschungsgemeinschaft (DFG DR 323/3-1), the Bundesministerium für Bildung und Forschung (Center for Stroke Research Berlin, 01 EO 0801), and the Kompetenznetz Schlaganfall to Dr. Dreier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens P. Dreier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nicoletti, C., Offenhauser, N., Jorks, D., Major, S., Dreier, J.P. (2012). Assessment of Neurovascular Coupling. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-576-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-576-3_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-575-6

  • Online ISBN: 978-1-61779-576-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics