Synthesis and Validation of Cyanine-Based Dyes for DIGE

  • Michael E. Jung
  • Wan-Joong Kim
  • Nuraly K. Avliyakulov
  • Merve Oztug
  • Michael J. HaykinsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 854)


The application of difference gel electrophoresis (DIGE), in particular its most common “minimal labeling” variety, utilizes N-hydroxysuccinimide esters of Cy2, Cy3, and Cy5 dyes, which are commercially available. We describe methods for the efficient synthesis of all three dyes from relatively inexpensive and commercially available precursors in only a few steps and with relatively high yields. In model DIGE experiments, the newly synthesized dyes proved to be indistinguishable from commercially available ones and have been shown to be stable for years while stored under argon as dry solids or after being dissolved in N,N-dimethylformamide.

Key words

DIGE Difference gel electrophoresis Benzoxazolium Cy2 Propyl Cy3 Ethyl Cy5 Cy dye synthesis 



Wan-Joong Kim and Nuraly K. Avliyakulov contributed equally to this study. We thank the Dean’s Office of the David Geffen School of Medicine at UCLA and Senior Associate Dean Leonard Rome for the generous and continuing support of this work.


  1. 1.
    O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 250: 4007–4021.Google Scholar
  2. 2.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.PubMedCrossRefGoogle Scholar
  3. 3.
    Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3: 36–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1: 401–409.PubMedCrossRefGoogle Scholar
  5. 5.
    Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5: 3105–3115.PubMedCrossRefGoogle Scholar
  6. 6.
    Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1: 377–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Jung ME, Kim W-J (2006) Practical syntheses of dyes for difference gel electrophoresis. Bioorg Med Chem 14: 92–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Jedrzejewska B, Kabatc J, Pietrzak M, Paczkowski J (2003) Hemicyanine dyes: synthesis, structure and photophysical properties. Dyes Pigments 58: 47–58.CrossRefGoogle Scholar
  9. 9.
    Hamilton AL, Birch MN, Hatcher MJ, Bosworth N, Scott B (1999) Energy transfer assay method and reagent. PCT Int Appl WO/1999/064519.Google Scholar
  10. 10.
    Schouten JA, Ladame S, Mason SJ, Cooper MA, Balasubramanian SG (2003) Quadruplex-specific peptide−hemicyanine ligands by partial combinatorial selection. J Am Chem Soc 125: 5594–5595.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorb LT, Romanov NN, Fedotov KV, Tolmachev AI (1981) Meso-ionic compounds with a nitrogen bridging atom. Polymethine dyes of the thiazolo[3,2-a]quinolinium 1-oxide series. Khim Geterotsikl Soedin, 481–484.Google Scholar
  12. 12.
    Abramenko PI, Zhiryakov VG (1975) Polymethine dyes, derivatives of 6-furo[2,3-b]pyridine. Khim Geterotsikl Soedin, 475–479.Google Scholar
  13. 13.
    Bailey J, Elvidge JA (1973) Synthesis and properties of dyes containing the pyrano[2,3-d]pyrimidine nucleus. J Chem Soc, Perkin Trans, 1: 823–828.CrossRefGoogle Scholar
  14. 14.
    Cummins WJ, West RM, Smith JA (1999) Cyanine dyes. PCT Int Appl WO/1999/005221.Google Scholar
  15. 15.
    Jackson P, Cummins WJ, West R, Smith JA, Briggs MSJ (1998) Analysis of carbohydrates. PCT Int Appl WO/1998/015829.Google Scholar
  16. 16.
    Wurthner F (1999) DMF in acetic anhydride: A useful reagent for multiple-component syntheses of merocyanine dyes. Synthesis, 2103–2113.Google Scholar
  17. 17.
    Durr H, Ma Y, Cortellaro G (1995) Preparation of photochromic molecules with polymerizable organic functionalities. Synthesis: 294–298.Google Scholar
  18. 18.
    Lee LG, Woo SL, Head DF, Dubrow RS, Baer TM (1995) Near-IR dyes in three-color volumetric capillary cytometry: Cell analysis with 633- and 785-nm laser excitation. Cytometry 21: 120–128.PubMedCrossRefGoogle Scholar
  19. 19.
    Mader O, Reiner K, Egelhaaf H-J, Fischer R, Brock R (2004) Structure-property analysis of pentamethine indocyanine dyes identification of a new dye for life-science applications. Bioconjugate Chem 15: 70–78.CrossRefGoogle Scholar
  20. 20.
    Reichardt C, Engel HD (1988) An improved method for the synthesis of 1,3,3-trialkyl-2-alkylideneindolines. Chem Ber 121: 1009–1011.CrossRefGoogle Scholar
  21. 21.
    Shiobasa Y, Ishida S (1960) Malonaldehyde dianil. Yamanouchi Pharmaceuticals Patent, Japan JP35 017020.Google Scholar
  22. 22.
    Kiprianov AI, Buryak VYu (1972) Cyanine dyes with two conjugated chromophores. XVIII. Effect of steric hindrance on the absorption spectra of bis(hemicyanines) from isomeric phenylenediamines with methyl groups on the benzene rings. Zh Org Khim 8: 1707–1712.Google Scholar
  23. 23.
    Ball CA, Osuna R, Ferguson KC, Johnson RC (1992) Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174: 8043–805.PubMedGoogle Scholar
  24. 24.
    Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R (2007) Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153: 2922–2940.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael E. Jung
    • 1
  • Wan-Joong Kim
    • 1
  • Nuraly K. Avliyakulov
    • 2
  • Merve Oztug
    • 2
  • Michael J. Haykinson
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Biological ChemistryDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations